基于LightGBM集合方法的库存量预测

Vatsal Mitesh Tailor
{"title":"基于LightGBM集合方法的库存量预测","authors":"Vatsal Mitesh Tailor","doi":"10.14299/ijser.2020.10.05","DOIUrl":null,"url":null,"abstract":"This paper leverages the LightGBM Ensemble Method to predict stock prices. First, the time features are from the dates and these generated features are used to build a regression model. Experiments are performed on the Tesla and the Coca Cola stock historical data to show the effectiveness of the method in predicting stock prices","PeriodicalId":14354,"journal":{"name":"International journal of scientific and engineering research","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploiting LightGBM Ensemble Method for Stock Prediction\",\"authors\":\"Vatsal Mitesh Tailor\",\"doi\":\"10.14299/ijser.2020.10.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper leverages the LightGBM Ensemble Method to predict stock prices. First, the time features are from the dates and these generated features are used to build a regression model. Experiments are performed on the Tesla and the Coca Cola stock historical data to show the effectiveness of the method in predicting stock prices\",\"PeriodicalId\":14354,\"journal\":{\"name\":\"International journal of scientific and engineering research\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of scientific and engineering research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14299/ijser.2020.10.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of scientific and engineering research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14299/ijser.2020.10.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用LightGBM集成方法来预测股票价格。首先,从日期中提取时间特征,并使用这些生成的特征构建回归模型。对特斯拉和可口可乐的股票历史数据进行了实验,以证明该方法在预测股价方面的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting LightGBM Ensemble Method for Stock Prediction
This paper leverages the LightGBM Ensemble Method to predict stock prices. First, the time features are from the dates and these generated features are used to build a regression model. Experiments are performed on the Tesla and the Coca Cola stock historical data to show the effectiveness of the method in predicting stock prices
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信