关于射影qtag -模的推广

IF 0.7 Q2 MATHEMATICS
F. Sikander, Firdhousi Begam, Tanveer Fatima
{"title":"关于射影qtag -模的推广","authors":"F. Sikander, Firdhousi Begam, Tanveer Fatima","doi":"10.1155/2023/3175455","DOIUrl":null,"url":null,"abstract":"<jats:p>In this manuscript, we define the class of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <msub>\n <mrow>\n <mi>ω</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula>-weakly <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>α</mi>\n </math>\n </jats:inline-formula>-projective QTAG-modules for the infinite ordinal <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mi>α</mi>\n </math>\n </jats:inline-formula> and provide its systematic study for the finite ordinal. Furthermore, we generalize this class to <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>ω</mi>\n <mo>.</mo>\n <mn>2</mn>\n <mo>+</mo>\n <mi>n</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>-projective modules and obtain some characterizations. We also study the <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi>ω</mi>\n </math>\n </jats:inline-formula>-totally weak <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>ω</mi>\n <mo>.</mo>\n <mn>2</mn>\n <mo>+</mo>\n <mi>n</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>-projective modules under the formation of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <msub>\n <mrow>\n <mi>ω</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula>-bijections.</jats:p>","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":"28 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Generalizations of Projective QTAG-Modules\",\"authors\":\"F. Sikander, Firdhousi Begam, Tanveer Fatima\",\"doi\":\"10.1155/2023/3175455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>In this manuscript, we define the class of <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <msub>\\n <mrow>\\n <mi>ω</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n </math>\\n </jats:inline-formula>-weakly <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <mi>α</mi>\\n </math>\\n </jats:inline-formula>-projective QTAG-modules for the infinite ordinal <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <mi>α</mi>\\n </math>\\n </jats:inline-formula> and provide its systematic study for the finite ordinal. Furthermore, we generalize this class to <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>ω</mi>\\n <mo>.</mo>\\n <mn>2</mn>\\n <mo>+</mo>\\n <mi>n</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>-projective modules and obtain some characterizations. We also study the <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M5\\\">\\n <mi>ω</mi>\\n </math>\\n </jats:inline-formula>-totally weak <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M6\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>ω</mi>\\n <mo>.</mo>\\n <mn>2</mn>\\n <mo>+</mo>\\n <mi>n</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>-projective modules under the formation of <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M7\\\">\\n <msub>\\n <mrow>\\n <mi>ω</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n </math>\\n </jats:inline-formula>-bijections.</jats:p>\",\"PeriodicalId\":43667,\"journal\":{\"name\":\"Muenster Journal of Mathematics\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Muenster Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/3175455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/3175455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这份手稿中,对于无穷序数α,我们定义了一类ω 1 -弱α -射影qtag -模并对有限序数进行了系统的研究。进一步,我们将这个类推广到ω。2 + n -投影模,得到了一些刻画。我们也研究了完全弱的ω。ω 1 -双射形成下的2 + n -射影模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Generalizations of Projective QTAG-Modules
In this manuscript, we define the class of ω 1 -weakly α -projective QTAG-modules for the infinite ordinal α and provide its systematic study for the finite ordinal. Furthermore, we generalize this class to ω . 2 + n -projective modules and obtain some characterizations. We also study the ω -totally weak ω . 2 + n -projective modules under the formation of ω 1 -bijections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信