基于流的机载视频车辆检测与背景拼接方法

H. Yalcin, M. Hebert, R. Collins, Michael J. Black
{"title":"基于流的机载视频车辆检测与背景拼接方法","authors":"H. Yalcin, M. Hebert, R. Collins, Michael J. Black","doi":"10.1109/CVPR.2005.29","DOIUrl":null,"url":null,"abstract":"In this work, we address the detection of vehicles in a video stream obtained from a moving airborne platform. We propose a Bayesian framework for estimating dense optical flow over time that explicitly estimates a persistent model of background appearance. The approach assumes that the scene can be described by background and occlusion layers, estimated within an expectation-maximization framework. The mathematical formulation of the paper is an extension of the work in (H. Yalcin et al., 2005) where motion and appearance models for foreground and background layers are estimated simultaneously in a Bayesian framework.","PeriodicalId":89346,"journal":{"name":"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops","volume":"89 1","pages":"1202"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":"{\"title\":\"A Flow-Based Approach to Vehicle Detection and Background Mosaicking in Airborne Video\",\"authors\":\"H. Yalcin, M. Hebert, R. Collins, Michael J. Black\",\"doi\":\"10.1109/CVPR.2005.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we address the detection of vehicles in a video stream obtained from a moving airborne platform. We propose a Bayesian framework for estimating dense optical flow over time that explicitly estimates a persistent model of background appearance. The approach assumes that the scene can be described by background and occlusion layers, estimated within an expectation-maximization framework. The mathematical formulation of the paper is an extension of the work in (H. Yalcin et al., 2005) where motion and appearance models for foreground and background layers are estimated simultaneously in a Bayesian framework.\",\"PeriodicalId\":89346,\"journal\":{\"name\":\"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops\",\"volume\":\"89 1\",\"pages\":\"1202\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2005.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Computer Vision and Pattern Recognition Workshops. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2005.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

摘要

在这项工作中,我们解决了从移动的机载平台获得的视频流中的车辆检测问题。我们提出了一个贝叶斯框架估计密集光流随着时间的推移,明确估计一个持久的模型的背景外观。该方法假设场景可以通过背景层和遮挡层来描述,并在期望最大化框架内进行估计。本文的数学公式是(H. Yalcin et al., 2005)工作的延伸,其中在贝叶斯框架中同时估计前景层和背景层的运动和外观模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Flow-Based Approach to Vehicle Detection and Background Mosaicking in Airborne Video
In this work, we address the detection of vehicles in a video stream obtained from a moving airborne platform. We propose a Bayesian framework for estimating dense optical flow over time that explicitly estimates a persistent model of background appearance. The approach assumes that the scene can be described by background and occlusion layers, estimated within an expectation-maximization framework. The mathematical formulation of the paper is an extension of the work in (H. Yalcin et al., 2005) where motion and appearance models for foreground and background layers are estimated simultaneously in a Bayesian framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信