一种并行化技术,可提高工作站异构集群的性能和集群利用率

Gerardo Díaz-Cuéllar, David A. Garza-Salazar
{"title":"一种并行化技术,可提高工作站异构集群的性能和集群利用率","authors":"Gerardo Díaz-Cuéllar, David A. Garza-Salazar","doi":"10.1109/CLUSTR.2002.1137756","DOIUrl":null,"url":null,"abstract":"We present a new parallelization technique that significantly improves performance of certain data-parallel algorithms on heterogeneous clusters of workstations. The two main goals of our technique are to improve execution times (compared to traditional parallelization techniques) and to efficiently use the computing resources available in the cluster. The technique is based on a pre-processing phase where information about the cluster is obtained, a load balanced data decomposition is derived, and information is generated to guide the cluster node utilization during the execution of the parallel algorithm. We applied our technique to Gaussian Elimination and Pairwise Interaction problems, the experiments show speedup improvements up to 133% and 275% respectively and the cluster utilization efficiency improves tip to 180% and 300% when compared to traditional parallelization techniques.","PeriodicalId":92128,"journal":{"name":"Proceedings. IEEE International Conference on Cluster Computing","volume":"366 1","pages":"275-283"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A parallelization technique that improves performance and cluster utilization efficiency for heterogeneous clusters of workstations\",\"authors\":\"Gerardo Díaz-Cuéllar, David A. Garza-Salazar\",\"doi\":\"10.1109/CLUSTR.2002.1137756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new parallelization technique that significantly improves performance of certain data-parallel algorithms on heterogeneous clusters of workstations. The two main goals of our technique are to improve execution times (compared to traditional parallelization techniques) and to efficiently use the computing resources available in the cluster. The technique is based on a pre-processing phase where information about the cluster is obtained, a load balanced data decomposition is derived, and information is generated to guide the cluster node utilization during the execution of the parallel algorithm. We applied our technique to Gaussian Elimination and Pairwise Interaction problems, the experiments show speedup improvements up to 133% and 275% respectively and the cluster utilization efficiency improves tip to 180% and 300% when compared to traditional parallelization techniques.\",\"PeriodicalId\":92128,\"journal\":{\"name\":\"Proceedings. IEEE International Conference on Cluster Computing\",\"volume\":\"366 1\",\"pages\":\"275-283\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE International Conference on Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLUSTR.2002.1137756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTR.2002.1137756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种新的并行化技术,可以显著提高某些数据并行算法在工作站异构集群上的性能。我们的技术的两个主要目标是提高执行时间(与传统的并行化技术相比)和有效地利用集群中可用的计算资源。该技术基于预处理阶段,在此阶段获取集群信息,导出负载均衡的数据分解,并生成信息以指导并行算法执行过程中的集群节点利用率。我们将该技术应用于高斯消去和配对交互问题,实验表明,与传统的并行化技术相比,该技术的加速分别提高了133%和275%,集群利用率分别提高了180%和300%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A parallelization technique that improves performance and cluster utilization efficiency for heterogeneous clusters of workstations
We present a new parallelization technique that significantly improves performance of certain data-parallel algorithms on heterogeneous clusters of workstations. The two main goals of our technique are to improve execution times (compared to traditional parallelization techniques) and to efficiently use the computing resources available in the cluster. The technique is based on a pre-processing phase where information about the cluster is obtained, a load balanced data decomposition is derived, and information is generated to guide the cluster node utilization during the execution of the parallel algorithm. We applied our technique to Gaussian Elimination and Pairwise Interaction problems, the experiments show speedup improvements up to 133% and 275% respectively and the cluster utilization efficiency improves tip to 180% and 300% when compared to traditional parallelization techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信