{"title":"DRBP:基于bp的动态增强人工神经网络训练","authors":"X. S. Cheng, E. Backer, J. J. Gerbrands","doi":"10.1109/ICPR.1992.201710","DOIUrl":null,"url":null,"abstract":"Describes a new training method, the DRBP-algorithm, for sigmoid-function based multilayer networks. The key step in DRBP is the dynamical selection and autonomous control of the learning rate. Various experiments have shown that the DRBP-algorithm has achieved its goal of fast speed, secure stability and easy parameter selection in practice.<<ETX>>","PeriodicalId":34917,"journal":{"name":"模式识别与人工智能","volume":"115 1","pages":"9-12"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DRBP: dynamically reinforced BP-based ANN-training\",\"authors\":\"X. S. Cheng, E. Backer, J. J. Gerbrands\",\"doi\":\"10.1109/ICPR.1992.201710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Describes a new training method, the DRBP-algorithm, for sigmoid-function based multilayer networks. The key step in DRBP is the dynamical selection and autonomous control of the learning rate. Various experiments have shown that the DRBP-algorithm has achieved its goal of fast speed, secure stability and easy parameter selection in practice.<<ETX>>\",\"PeriodicalId\":34917,\"journal\":{\"name\":\"模式识别与人工智能\",\"volume\":\"115 1\",\"pages\":\"9-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"模式识别与人工智能\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.1992.201710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"模式识别与人工智能","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ICPR.1992.201710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
Describes a new training method, the DRBP-algorithm, for sigmoid-function based multilayer networks. The key step in DRBP is the dynamical selection and autonomous control of the learning rate. Various experiments have shown that the DRBP-algorithm has achieved its goal of fast speed, secure stability and easy parameter selection in practice.<>