DRBP:基于bp的动态增强人工神经网络训练

Q4 Computer Science
X. S. Cheng, E. Backer, J. J. Gerbrands
{"title":"DRBP:基于bp的动态增强人工神经网络训练","authors":"X. S. Cheng, E. Backer, J. J. Gerbrands","doi":"10.1109/ICPR.1992.201710","DOIUrl":null,"url":null,"abstract":"Describes a new training method, the DRBP-algorithm, for sigmoid-function based multilayer networks. The key step in DRBP is the dynamical selection and autonomous control of the learning rate. Various experiments have shown that the DRBP-algorithm has achieved its goal of fast speed, secure stability and easy parameter selection in practice.<<ETX>>","PeriodicalId":34917,"journal":{"name":"模式识别与人工智能","volume":"115 1","pages":"9-12"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DRBP: dynamically reinforced BP-based ANN-training\",\"authors\":\"X. S. Cheng, E. Backer, J. J. Gerbrands\",\"doi\":\"10.1109/ICPR.1992.201710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Describes a new training method, the DRBP-algorithm, for sigmoid-function based multilayer networks. The key step in DRBP is the dynamical selection and autonomous control of the learning rate. Various experiments have shown that the DRBP-algorithm has achieved its goal of fast speed, secure stability and easy parameter selection in practice.<<ETX>>\",\"PeriodicalId\":34917,\"journal\":{\"name\":\"模式识别与人工智能\",\"volume\":\"115 1\",\"pages\":\"9-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"模式识别与人工智能\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.1992.201710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"模式识别与人工智能","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ICPR.1992.201710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

描述了基于s型函数的多层网络的一种新的训练方法——drbp算法。DRBP算法的关键是学习速率的动态选择和自主控制。各种实验表明,drbp算法在实践中达到了速度快、安全稳定、参数选择方便的目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DRBP: dynamically reinforced BP-based ANN-training
Describes a new training method, the DRBP-algorithm, for sigmoid-function based multilayer networks. The key step in DRBP is the dynamical selection and autonomous control of the learning rate. Various experiments have shown that the DRBP-algorithm has achieved its goal of fast speed, secure stability and easy parameter selection in practice.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
模式识别与人工智能
模式识别与人工智能 Computer Science-Artificial Intelligence
CiteScore
1.60
自引率
0.00%
发文量
3316
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信