在线神经形态生物医学波形分析

H. Kohen
{"title":"在线神经形态生物医学波形分析","authors":"H. Kohen","doi":"10.1109/IEMBS.1995.575394","DOIUrl":null,"url":null,"abstract":"Addresses the real-time and on-line processing of clinical patient waveform patterns so as to improve critical-care maintenance in anesthesiology. The authors demonstrate that patient waveform pattern interpretation is achieved via a neuromorphic approach. This is primarily attributed to a neural networks ability to adaptively learn from examples. The authors utilized four distinct data sets (each containing a hundred patterns) encompassing patients vital clinical breathing patterns (i.e. hypocapnia, hypoventilation, and curare cleft) to train their network. Each pattern featured a base, ascending, plateau, and descending lines. The test and training data sets were obtained from actual strip-chart recordings. The Neuromorphic System (Neuro-Sys) was trained to correctly classify all of twenty-one unique clinical breathing patterns within a ten percent error-tolerance.","PeriodicalId":20509,"journal":{"name":"Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1995-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On-line neuromorphic biomedical waveform analysis\",\"authors\":\"H. Kohen\",\"doi\":\"10.1109/IEMBS.1995.575394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Addresses the real-time and on-line processing of clinical patient waveform patterns so as to improve critical-care maintenance in anesthesiology. The authors demonstrate that patient waveform pattern interpretation is achieved via a neuromorphic approach. This is primarily attributed to a neural networks ability to adaptively learn from examples. The authors utilized four distinct data sets (each containing a hundred patterns) encompassing patients vital clinical breathing patterns (i.e. hypocapnia, hypoventilation, and curare cleft) to train their network. Each pattern featured a base, ascending, plateau, and descending lines. The test and training data sets were obtained from actual strip-chart recordings. The Neuromorphic System (Neuro-Sys) was trained to correctly classify all of twenty-one unique clinical breathing patterns within a ten percent error-tolerance.\",\"PeriodicalId\":20509,\"journal\":{\"name\":\"Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMBS.1995.575394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.1995.575394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

解决临床病人波形模式的实时和在线处理,以提高麻醉重症监护的维护。作者证明,患者波形模式的解释是通过神经形态的方法实现的。这主要归因于神经网络从实例中自适应学习的能力。作者使用了四个不同的数据集(每个包含一百种模式),包括患者重要的临床呼吸模式(即低碳酸血症,低通气和曲裂)来训练他们的网络。每种图案都有底部、上升线、高原线和下降线。测试和训练数据集来自实际的条形图记录。神经形态系统(neurosys)经过训练,可以在10%的容错范围内正确分类所有21种独特的临床呼吸模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On-line neuromorphic biomedical waveform analysis
Addresses the real-time and on-line processing of clinical patient waveform patterns so as to improve critical-care maintenance in anesthesiology. The authors demonstrate that patient waveform pattern interpretation is achieved via a neuromorphic approach. This is primarily attributed to a neural networks ability to adaptively learn from examples. The authors utilized four distinct data sets (each containing a hundred patterns) encompassing patients vital clinical breathing patterns (i.e. hypocapnia, hypoventilation, and curare cleft) to train their network. Each pattern featured a base, ascending, plateau, and descending lines. The test and training data sets were obtained from actual strip-chart recordings. The Neuromorphic System (Neuro-Sys) was trained to correctly classify all of twenty-one unique clinical breathing patterns within a ten percent error-tolerance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信