Srishti Garg, R. Yuan, A. Gopalsamy, Frederic A. Fellouse, S. Sidhu, J. Dou, J. Aitchison
{"title":"登革热的多路、护理点传感","authors":"Srishti Garg, R. Yuan, A. Gopalsamy, Frederic A. Fellouse, S. Sidhu, J. Dou, J. Aitchison","doi":"10.1109/SENSORS43011.2019.8956616","DOIUrl":null,"url":null,"abstract":"There is a growing need for diagnostic technologies which can provide accurate disease detection using sensitive, reliable, and inexpensive methods. A lot of research has been directed towards developing efficient point-of-care devices that enable the parallel detection of multiple analytes, in small-volume samples, with high sensitivity and in a short time. Flow cytometry, used for bead-based immunoassays are expensive and bulky. Using a microfluidic based optical detection system makes the whole process convenient and cheap. This motivates us to explore this platform for multiplexed testing by incorporating microbead-based assays. Hence, we aim to develop a microfluidics based optical detection system, which can measure multiple analytes at the same time for diseases like dengue. Dengue detection using NS1-4 (non-structural protein), which inflates on the first day of virus with the IgG antibody, can give significant information for the treatment. Simultaneous detection of dengue antigen and antibody is crucial for prevention and diagnosis of dengue infection. The outcome of this study generates the first-generation prototype of a universal fluorescence detection device capable of both classifying the microspheres and measuring the amount of specific biomarker.","PeriodicalId":6710,"journal":{"name":"2019 IEEE SENSORS","volume":"30 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Multiplexed, Point-of-Care Sensing for Dengue\",\"authors\":\"Srishti Garg, R. Yuan, A. Gopalsamy, Frederic A. Fellouse, S. Sidhu, J. Dou, J. Aitchison\",\"doi\":\"10.1109/SENSORS43011.2019.8956616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a growing need for diagnostic technologies which can provide accurate disease detection using sensitive, reliable, and inexpensive methods. A lot of research has been directed towards developing efficient point-of-care devices that enable the parallel detection of multiple analytes, in small-volume samples, with high sensitivity and in a short time. Flow cytometry, used for bead-based immunoassays are expensive and bulky. Using a microfluidic based optical detection system makes the whole process convenient and cheap. This motivates us to explore this platform for multiplexed testing by incorporating microbead-based assays. Hence, we aim to develop a microfluidics based optical detection system, which can measure multiple analytes at the same time for diseases like dengue. Dengue detection using NS1-4 (non-structural protein), which inflates on the first day of virus with the IgG antibody, can give significant information for the treatment. Simultaneous detection of dengue antigen and antibody is crucial for prevention and diagnosis of dengue infection. The outcome of this study generates the first-generation prototype of a universal fluorescence detection device capable of both classifying the microspheres and measuring the amount of specific biomarker.\",\"PeriodicalId\":6710,\"journal\":{\"name\":\"2019 IEEE SENSORS\",\"volume\":\"30 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE SENSORS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSORS43011.2019.8956616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS43011.2019.8956616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
There is a growing need for diagnostic technologies which can provide accurate disease detection using sensitive, reliable, and inexpensive methods. A lot of research has been directed towards developing efficient point-of-care devices that enable the parallel detection of multiple analytes, in small-volume samples, with high sensitivity and in a short time. Flow cytometry, used for bead-based immunoassays are expensive and bulky. Using a microfluidic based optical detection system makes the whole process convenient and cheap. This motivates us to explore this platform for multiplexed testing by incorporating microbead-based assays. Hence, we aim to develop a microfluidics based optical detection system, which can measure multiple analytes at the same time for diseases like dengue. Dengue detection using NS1-4 (non-structural protein), which inflates on the first day of virus with the IgG antibody, can give significant information for the treatment. Simultaneous detection of dengue antigen and antibody is crucial for prevention and diagnosis of dengue infection. The outcome of this study generates the first-generation prototype of a universal fluorescence detection device capable of both classifying the microspheres and measuring the amount of specific biomarker.