具有不确定性的自动驾驶车辆动作条件反应预测

Hayoung Kim, Gihoon Kim, Jongwon Park, Kyushik Min, Dongchan Kim, K. Huh
{"title":"具有不确定性的自动驾驶车辆动作条件反应预测","authors":"Hayoung Kim, Gihoon Kim, Jongwon Park, Kyushik Min, Dongchan Kim, K. Huh","doi":"10.1109/ISPACS48206.2019.8986322","DOIUrl":null,"url":null,"abstract":"Interaction-aware prediction is a critical component for realistic path planning that prevents automated vehicles from overly cautious driving. It requires to consider internal states of other driver such as driving style and intention, which the automated vehicle cannot directly measure. This paper proposes a probabilistic driver model for response prediction given the planned future actions of automated vehicle. The drivers internal states are considered in an unsupervised manner. The prediction model utilizes mixture density network to estimate future acceleration and yaw-rate profile of interacting vehicles. The proposed method is evaluated by using real-world trajectory data.","PeriodicalId":6765,"journal":{"name":"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"8 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Action Conditioned Response Prediction with Uncertainty for Automated Vehicles\",\"authors\":\"Hayoung Kim, Gihoon Kim, Jongwon Park, Kyushik Min, Dongchan Kim, K. Huh\",\"doi\":\"10.1109/ISPACS48206.2019.8986322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interaction-aware prediction is a critical component for realistic path planning that prevents automated vehicles from overly cautious driving. It requires to consider internal states of other driver such as driving style and intention, which the automated vehicle cannot directly measure. This paper proposes a probabilistic driver model for response prediction given the planned future actions of automated vehicle. The drivers internal states are considered in an unsupervised manner. The prediction model utilizes mixture density network to estimate future acceleration and yaw-rate profile of interacting vehicles. The proposed method is evaluated by using real-world trajectory data.\",\"PeriodicalId\":6765,\"journal\":{\"name\":\"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"8 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS48206.2019.8986322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS48206.2019.8986322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

交互感知预测是现实路径规划的关键组成部分,可以防止自动驾驶汽车过度谨慎驾驶。它需要考虑其他驾驶员的内部状态,如驾驶风格和意图,而这些是自动驾驶汽车无法直接测量的。本文提出了一种概率驾驶员模型,用于预测自动驾驶汽车的响应。以无监督的方式考虑驱动程序的内部状态。该预测模型利用混合密度网络来估计相互作用车辆的未来加速度和横航速分布。利用实际轨迹数据对该方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Action Conditioned Response Prediction with Uncertainty for Automated Vehicles
Interaction-aware prediction is a critical component for realistic path planning that prevents automated vehicles from overly cautious driving. It requires to consider internal states of other driver such as driving style and intention, which the automated vehicle cannot directly measure. This paper proposes a probabilistic driver model for response prediction given the planned future actions of automated vehicle. The drivers internal states are considered in an unsupervised manner. The prediction model utilizes mixture density network to estimate future acceleration and yaw-rate profile of interacting vehicles. The proposed method is evaluated by using real-world trajectory data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信