具有非线性源函数和时滞的Riesz空间分数阶方程的降阶外推Crank-Nicolson有限差分格式

Yanhua Cao, Zhendong Luo
{"title":"具有非线性源函数和时滞的Riesz空间分数阶方程的降阶外推Crank-Nicolson有限差分格式","authors":"Yanhua Cao, Zhendong Luo","doi":"10.22436/JNSA.011.05.08","DOIUrl":null,"url":null,"abstract":"This article mainly studies the order-reduction of the classical Crank-Nicolson finite difference (CNFD) scheme for the Riesz space fractional order differential equations (FODEs) with a nonlinear source function and delay on a bounded domain. For this reason, the classical CNFD scheme for the Riesz space FODE and the existence, stability, and convergence of the classical CNFD solutions are first recalled. And then, a reduced-order extrapolating CNFD (ROECNFD) scheme containing very few degrees of freedom but holding the fully second-order accuracy for the Riesz space FODEs is established by means of proper orthogonal decomposition and the existence, stability, and convergence of the ROECNFD solutions are discussed. Finally, some numerical experiments are presented to illustrate that the ROECNFD scheme is far superior to the classical CNFD one and to verify the correctness of theoretical results. This indicates that the ROECNFD scheme is very effective for solving the Riesz space FODEs with a nonlinear source function and delay.","PeriodicalId":22770,"journal":{"name":"The Journal of Nonlinear Sciences and Applications","volume":"47 1","pages":"672-682"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A reduced-order extrapolating Crank-Nicolson finite difference scheme for the Riesz space fractional order equations with a nonlinear source function and delay\",\"authors\":\"Yanhua Cao, Zhendong Luo\",\"doi\":\"10.22436/JNSA.011.05.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article mainly studies the order-reduction of the classical Crank-Nicolson finite difference (CNFD) scheme for the Riesz space fractional order differential equations (FODEs) with a nonlinear source function and delay on a bounded domain. For this reason, the classical CNFD scheme for the Riesz space FODE and the existence, stability, and convergence of the classical CNFD solutions are first recalled. And then, a reduced-order extrapolating CNFD (ROECNFD) scheme containing very few degrees of freedom but holding the fully second-order accuracy for the Riesz space FODEs is established by means of proper orthogonal decomposition and the existence, stability, and convergence of the ROECNFD solutions are discussed. Finally, some numerical experiments are presented to illustrate that the ROECNFD scheme is far superior to the classical CNFD one and to verify the correctness of theoretical results. This indicates that the ROECNFD scheme is very effective for solving the Riesz space FODEs with a nonlinear source function and delay.\",\"PeriodicalId\":22770,\"journal\":{\"name\":\"The Journal of Nonlinear Sciences and Applications\",\"volume\":\"47 1\",\"pages\":\"672-682\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Nonlinear Sciences and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22436/JNSA.011.05.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Nonlinear Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22436/JNSA.011.05.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文主要研究有界域上具有非线性源函数和时滞的Riesz空间分数阶微分方程的经典Crank-Nicolson有限差分格式的降阶问题。为此,首先回顾了Riesz空间FODE的经典CNFD格式以及经典CNFD解的存在性、稳定性和收敛性。然后,通过适当的正交分解,建立了Riesz空间FODEs的一种包含很少自由度但具有完全二阶精度的降阶外推CNFD (ROECNFD)格式,并讨论了该格式解的存在性、稳定性和收敛性。最后,通过数值实验验证了ROECNFD格式远优于经典CNFD格式,并验证了理论结果的正确性。这表明ROECNFD方案对于求解具有非线性源函数和时滞的Riesz空间FODEs是非常有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A reduced-order extrapolating Crank-Nicolson finite difference scheme for the Riesz space fractional order equations with a nonlinear source function and delay
This article mainly studies the order-reduction of the classical Crank-Nicolson finite difference (CNFD) scheme for the Riesz space fractional order differential equations (FODEs) with a nonlinear source function and delay on a bounded domain. For this reason, the classical CNFD scheme for the Riesz space FODE and the existence, stability, and convergence of the classical CNFD solutions are first recalled. And then, a reduced-order extrapolating CNFD (ROECNFD) scheme containing very few degrees of freedom but holding the fully second-order accuracy for the Riesz space FODEs is established by means of proper orthogonal decomposition and the existence, stability, and convergence of the ROECNFD solutions are discussed. Finally, some numerical experiments are presented to illustrate that the ROECNFD scheme is far superior to the classical CNFD one and to verify the correctness of theoretical results. This indicates that the ROECNFD scheme is very effective for solving the Riesz space FODEs with a nonlinear source function and delay.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信