奇异摄动边值问题的投影方法

I.A. Blatov
{"title":"奇异摄动边值问题的投影方法","authors":"I.A. Blatov","doi":"10.1016/0041-5553(90)90043-R","DOIUrl":null,"url":null,"abstract":"<div><p>A finite element method for linear and non-linear singularly perturbed boundary-value problems is considered. It is proved that the approximate solutions converge to the exact solution in the norm of the space of continuous functions, uniformly in the small parameter. The proposed scheme is suitable for solving a wider class of problems than can be handled by the popular “hinged element method”, and also produces a higher order of approximation.</p></div>","PeriodicalId":101271,"journal":{"name":"USSR Computational Mathematics and Mathematical Physics","volume":"30 4","pages":"Pages 47-56"},"PeriodicalIF":0.0000,"publicationDate":"1990-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0041-5553(90)90043-R","citationCount":"8","resultStr":"{\"title\":\"The projection method for singularly perturbed boundary-value problems\",\"authors\":\"I.A. Blatov\",\"doi\":\"10.1016/0041-5553(90)90043-R\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A finite element method for linear and non-linear singularly perturbed boundary-value problems is considered. It is proved that the approximate solutions converge to the exact solution in the norm of the space of continuous functions, uniformly in the small parameter. The proposed scheme is suitable for solving a wider class of problems than can be handled by the popular “hinged element method”, and also produces a higher order of approximation.</p></div>\",\"PeriodicalId\":101271,\"journal\":{\"name\":\"USSR Computational Mathematics and Mathematical Physics\",\"volume\":\"30 4\",\"pages\":\"Pages 47-56\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0041-5553(90)90043-R\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"USSR Computational Mathematics and Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/004155539090043R\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"USSR Computational Mathematics and Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/004155539090043R","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

研究了求解线性和非线性奇摄动边值问题的有限元方法。证明了在连续函数空间范数上近似解收敛于精确解,在小参数下一致收敛于精确解。与常用的“铰链单元法”相比,该方法适用于解决更广泛的问题,并且具有更高的近似阶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The projection method for singularly perturbed boundary-value problems

A finite element method for linear and non-linear singularly perturbed boundary-value problems is considered. It is proved that the approximate solutions converge to the exact solution in the norm of the space of continuous functions, uniformly in the small parameter. The proposed scheme is suitable for solving a wider class of problems than can be handled by the popular “hinged element method”, and also produces a higher order of approximation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信