{"title":"利用FRET-FLIM法研究金纳米颗粒的内吞作用","authors":"Yinan Zhang, Yu Chen, Jun Yu, D. Birch","doi":"10.2316/P.2017.852-032","DOIUrl":null,"url":null,"abstract":"In this report we have demonstrated a fluorescence resonant energy transfer (FRET)-fluorescence lifetime imaging microscopy (FLIM) combined approach to study the intracellular pathway of gold nanoparticles. The detected energy transfer between gold nanorods (GNRs) and green fluorescence protein (GFP) labeled Heia cell early endosomes and the in-depth lifetime distribution analysis on the transfer process suggest an endocytotic uptake process of GNRs. Furthermore, the FRET-FLIM method profits from a surface plasmon enhanced energy transfer mechanism when taking into consideration of GNRs and two photon excitation, and is effective in biological imaging, sensing, and even in single molecular tracing in both in vivo and in vitro studies.","PeriodicalId":6635,"journal":{"name":"2017 13th IASTED International Conference on Biomedical Engineering (BioMed)","volume":"40 1","pages":"26-31"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endosytosis study of gold nanoparticles through FRET-FLIM approach\",\"authors\":\"Yinan Zhang, Yu Chen, Jun Yu, D. Birch\",\"doi\":\"10.2316/P.2017.852-032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this report we have demonstrated a fluorescence resonant energy transfer (FRET)-fluorescence lifetime imaging microscopy (FLIM) combined approach to study the intracellular pathway of gold nanoparticles. The detected energy transfer between gold nanorods (GNRs) and green fluorescence protein (GFP) labeled Heia cell early endosomes and the in-depth lifetime distribution analysis on the transfer process suggest an endocytotic uptake process of GNRs. Furthermore, the FRET-FLIM method profits from a surface plasmon enhanced energy transfer mechanism when taking into consideration of GNRs and two photon excitation, and is effective in biological imaging, sensing, and even in single molecular tracing in both in vivo and in vitro studies.\",\"PeriodicalId\":6635,\"journal\":{\"name\":\"2017 13th IASTED International Conference on Biomedical Engineering (BioMed)\",\"volume\":\"40 1\",\"pages\":\"26-31\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th IASTED International Conference on Biomedical Engineering (BioMed)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2316/P.2017.852-032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th IASTED International Conference on Biomedical Engineering (BioMed)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2316/P.2017.852-032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Endosytosis study of gold nanoparticles through FRET-FLIM approach
In this report we have demonstrated a fluorescence resonant energy transfer (FRET)-fluorescence lifetime imaging microscopy (FLIM) combined approach to study the intracellular pathway of gold nanoparticles. The detected energy transfer between gold nanorods (GNRs) and green fluorescence protein (GFP) labeled Heia cell early endosomes and the in-depth lifetime distribution analysis on the transfer process suggest an endocytotic uptake process of GNRs. Furthermore, the FRET-FLIM method profits from a surface plasmon enhanced energy transfer mechanism when taking into consideration of GNRs and two photon excitation, and is effective in biological imaging, sensing, and even in single molecular tracing in both in vivo and in vitro studies.