ONAC054过表达提高水稻抗旱性和产量

GM crops Pub Date : 2022-10-20 DOI:10.3390/crops2040027
Yasuhito Sakuraba, N. Paek
{"title":"ONAC054过表达提高水稻抗旱性和产量","authors":"Yasuhito Sakuraba, N. Paek","doi":"10.3390/crops2040027","DOIUrl":null,"url":null,"abstract":"Drought stress negatively affects plant growth and development, thus reducing plant productivity. Therefore, understanding the molecular mechanisms underlying drought stress responses is essential for crop improvement. The plant-specific NAM/ATAF1,2/CUC2 (NAC) transcription factors play important roles in the drought stress response. Here, we show that rice (Oryza sativa) ONAC054, a membrane-bound NAC transcription factor, is involved in the drought stress response. We found that onac054 mutants were sensitive, whereas ONAC054-overexpressing (ONAC054-OX) plants were tolerant to drought stress. Under drought stress conditions, several genes associated with abscisic acid (ABA) synthesis and signaling were downregulated in onac054 mutants but upregulated in ONAC054-OX plants. Among these genes, the TRANSCRIPTION FACTOR RESPONSIBLE FOR ABA REGULATION 1 (TRAB1), which encodes an ABA-inducible bZIP transcription factor, was directly activated by ONAC054. On the other hand, the expression of ONAC054 was directly activated by several ABA-responsive elements (ABRE)-binding factors (ABFs) in an ABA-dependent manner, indicating that ONAC054 acts as an enhancer of ABA-induced drought stress tolerance. Additionally, the overexpression of ONAC054 in rice greatly improved grain yield under drought stress conditions, indicating that the overexpression of ONAC054 could facilitate the improvement of drought stress tolerance in rice and other crops.","PeriodicalId":89376,"journal":{"name":"GM crops","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Overexpression of ONAC054 Improves Drought Stress Tolerance and Grain Yield in Rice\",\"authors\":\"Yasuhito Sakuraba, N. Paek\",\"doi\":\"10.3390/crops2040027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drought stress negatively affects plant growth and development, thus reducing plant productivity. Therefore, understanding the molecular mechanisms underlying drought stress responses is essential for crop improvement. The plant-specific NAM/ATAF1,2/CUC2 (NAC) transcription factors play important roles in the drought stress response. Here, we show that rice (Oryza sativa) ONAC054, a membrane-bound NAC transcription factor, is involved in the drought stress response. We found that onac054 mutants were sensitive, whereas ONAC054-overexpressing (ONAC054-OX) plants were tolerant to drought stress. Under drought stress conditions, several genes associated with abscisic acid (ABA) synthesis and signaling were downregulated in onac054 mutants but upregulated in ONAC054-OX plants. Among these genes, the TRANSCRIPTION FACTOR RESPONSIBLE FOR ABA REGULATION 1 (TRAB1), which encodes an ABA-inducible bZIP transcription factor, was directly activated by ONAC054. On the other hand, the expression of ONAC054 was directly activated by several ABA-responsive elements (ABRE)-binding factors (ABFs) in an ABA-dependent manner, indicating that ONAC054 acts as an enhancer of ABA-induced drought stress tolerance. Additionally, the overexpression of ONAC054 in rice greatly improved grain yield under drought stress conditions, indicating that the overexpression of ONAC054 could facilitate the improvement of drought stress tolerance in rice and other crops.\",\"PeriodicalId\":89376,\"journal\":{\"name\":\"GM crops\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GM crops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/crops2040027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GM crops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/crops2040027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

干旱胁迫对植物的生长发育产生负面影响,从而降低了植物的生产力。因此,了解干旱胁迫反应的分子机制对作物改良至关重要。植物特异性NAM/ ataf1,2 /CUC2 (NAC)转录因子在干旱胁迫响应中起重要作用。本研究表明,水稻(Oryza sativa) ONAC054(一种膜结合的NAC转录因子)参与了干旱胁迫反应。我们发现onac054突变体对干旱胁迫敏感,而onac054 -过表达(onac054 - ox)的植株对干旱胁迫具有耐受性。干旱胁迫条件下,onac054突变体中与脱落酸(ABA)合成和信号传导相关的几个基因下调,而onac054 - ox突变体中上调。在这些基因中,负责ABA调控1的转录因子(TRAB1)编码ABA诱导的bZIP转录因子,被ONAC054直接激活。另一方面,ONAC054的表达以aba依赖的方式直接被aba响应元件(ABRE)结合因子(ABFs)激活,表明ONAC054是aba诱导的干旱胁迫耐受性增强剂。此外,水稻过表达ONAC054可以显著提高干旱胁迫条件下的籽粒产量,说明过表达ONAC054可以促进水稻和其他作物抗旱性的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Overexpression of ONAC054 Improves Drought Stress Tolerance and Grain Yield in Rice
Drought stress negatively affects plant growth and development, thus reducing plant productivity. Therefore, understanding the molecular mechanisms underlying drought stress responses is essential for crop improvement. The plant-specific NAM/ATAF1,2/CUC2 (NAC) transcription factors play important roles in the drought stress response. Here, we show that rice (Oryza sativa) ONAC054, a membrane-bound NAC transcription factor, is involved in the drought stress response. We found that onac054 mutants were sensitive, whereas ONAC054-overexpressing (ONAC054-OX) plants were tolerant to drought stress. Under drought stress conditions, several genes associated with abscisic acid (ABA) synthesis and signaling were downregulated in onac054 mutants but upregulated in ONAC054-OX plants. Among these genes, the TRANSCRIPTION FACTOR RESPONSIBLE FOR ABA REGULATION 1 (TRAB1), which encodes an ABA-inducible bZIP transcription factor, was directly activated by ONAC054. On the other hand, the expression of ONAC054 was directly activated by several ABA-responsive elements (ABRE)-binding factors (ABFs) in an ABA-dependent manner, indicating that ONAC054 acts as an enhancer of ABA-induced drought stress tolerance. Additionally, the overexpression of ONAC054 in rice greatly improved grain yield under drought stress conditions, indicating that the overexpression of ONAC054 could facilitate the improvement of drought stress tolerance in rice and other crops.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信