{"title":"单泡和多泡声致发光电离过程的计算模拟","authors":"Jinfu Liang, Weizhong Chen, Yu An","doi":"10.2139/ssrn.3904623","DOIUrl":null,"url":null,"abstract":"\n The most recent spectroscopic studies of moving-single bubble sonoluminescence (MSBSL) and multi-bubble sonoluminescence (MBSL) have revealed that hydrated electrons (e$_{\\texttt{aq}}^{-}$) are generated in MSBSL but absent in MBSL. To explore the mechanism this phenomenon, we numerically simulated the ionization processes in single- and multi-bubble sonoluminescence in aqueous solution of terbium chloride (TbCl$_{3}$). The results show that the maximum degree of ionization of single-bubble sonoluminescence (SBSL) is approximately 10000 times greater than that of MBSL under certain special physical parameters. The hydrated electrons (e$_{\\texttt{aq}}^{-}$) formed in SBSL are far greater than those in MBSL provided these electrons are ejected from a bubble into a liquid. Therefore, the quenching of e$_{\\texttt{aq}}^{-}$ to SBSL spectrum is stronger than that of the MBSL spectrum. This may be the reason that the trivalent terbium [Tb(III)] ion line intensities from SBSL in the TbCl$_{3}$ aqueous solutions with the acceptor of e$_{\\texttt{aq}}^{-}$ are stronger than those of TbCl$_{3}$ aqueous solutions without the acceptor of e$_{\\texttt{aq}}^{-}$, whereas the Tb(III) ion line intensities from MBSL are not variational, which is significant for exploring the mechanism behind the cavitation and sonoluminescence.","PeriodicalId":9858,"journal":{"name":"Chemical Engineering (Engineering) eJournal","volume":"56 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Simulation of Ionization Processes in Single-Bubble and Multi-Bubble Sonoluminescence\",\"authors\":\"Jinfu Liang, Weizhong Chen, Yu An\",\"doi\":\"10.2139/ssrn.3904623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The most recent spectroscopic studies of moving-single bubble sonoluminescence (MSBSL) and multi-bubble sonoluminescence (MBSL) have revealed that hydrated electrons (e$_{\\\\texttt{aq}}^{-}$) are generated in MSBSL but absent in MBSL. To explore the mechanism this phenomenon, we numerically simulated the ionization processes in single- and multi-bubble sonoluminescence in aqueous solution of terbium chloride (TbCl$_{3}$). The results show that the maximum degree of ionization of single-bubble sonoluminescence (SBSL) is approximately 10000 times greater than that of MBSL under certain special physical parameters. The hydrated electrons (e$_{\\\\texttt{aq}}^{-}$) formed in SBSL are far greater than those in MBSL provided these electrons are ejected from a bubble into a liquid. Therefore, the quenching of e$_{\\\\texttt{aq}}^{-}$ to SBSL spectrum is stronger than that of the MBSL spectrum. This may be the reason that the trivalent terbium [Tb(III)] ion line intensities from SBSL in the TbCl$_{3}$ aqueous solutions with the acceptor of e$_{\\\\texttt{aq}}^{-}$ are stronger than those of TbCl$_{3}$ aqueous solutions without the acceptor of e$_{\\\\texttt{aq}}^{-}$, whereas the Tb(III) ion line intensities from MBSL are not variational, which is significant for exploring the mechanism behind the cavitation and sonoluminescence.\",\"PeriodicalId\":9858,\"journal\":{\"name\":\"Chemical Engineering (Engineering) eJournal\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering (Engineering) eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3904623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering (Engineering) eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3904623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computational Simulation of Ionization Processes in Single-Bubble and Multi-Bubble Sonoluminescence
The most recent spectroscopic studies of moving-single bubble sonoluminescence (MSBSL) and multi-bubble sonoluminescence (MBSL) have revealed that hydrated electrons (e$_{\texttt{aq}}^{-}$) are generated in MSBSL but absent in MBSL. To explore the mechanism this phenomenon, we numerically simulated the ionization processes in single- and multi-bubble sonoluminescence in aqueous solution of terbium chloride (TbCl$_{3}$). The results show that the maximum degree of ionization of single-bubble sonoluminescence (SBSL) is approximately 10000 times greater than that of MBSL under certain special physical parameters. The hydrated electrons (e$_{\texttt{aq}}^{-}$) formed in SBSL are far greater than those in MBSL provided these electrons are ejected from a bubble into a liquid. Therefore, the quenching of e$_{\texttt{aq}}^{-}$ to SBSL spectrum is stronger than that of the MBSL spectrum. This may be the reason that the trivalent terbium [Tb(III)] ion line intensities from SBSL in the TbCl$_{3}$ aqueous solutions with the acceptor of e$_{\texttt{aq}}^{-}$ are stronger than those of TbCl$_{3}$ aqueous solutions without the acceptor of e$_{\texttt{aq}}^{-}$, whereas the Tb(III) ion line intensities from MBSL are not variational, which is significant for exploring the mechanism behind the cavitation and sonoluminescence.