大型地形TIN dem和等高线树计算的大规模并行算法

Abhinandan Nath, K. Fox, Kamesh Munagala, P. Agarwal
{"title":"大型地形TIN dem和等高线树计算的大规模并行算法","authors":"Abhinandan Nath, K. Fox, Kamesh Munagala, P. Agarwal","doi":"10.1145/2996913.2996952","DOIUrl":null,"url":null,"abstract":"We propose parallel algorithms in the massively parallel communication (MPC) model (e.g. MapReduce) for processing large terrain elevation data (represented as a 3D point cloud) that are too big to fit on one machine. In particular, given a set S of 3D points that is distributed across multiple machines, we present a simple randomized algorithm to construct a TIN DEM of S by computing the Delaunay triangulation of the xy-projections of points in S, which is also stored across multiple machines. With high probability, the algorithm works in O(1) rounds and the total work performed is O(n log n). Next, we describe an efficient algorithm in the MPC model for computing the contour tree of the resulting DEM. Under some assumptions on the input, the algorithm works in O(1) rounds and the total work performed is O(n log n).","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Massively parallel algorithms for computing TIN DEMs and contour trees for large terrains\",\"authors\":\"Abhinandan Nath, K. Fox, Kamesh Munagala, P. Agarwal\",\"doi\":\"10.1145/2996913.2996952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose parallel algorithms in the massively parallel communication (MPC) model (e.g. MapReduce) for processing large terrain elevation data (represented as a 3D point cloud) that are too big to fit on one machine. In particular, given a set S of 3D points that is distributed across multiple machines, we present a simple randomized algorithm to construct a TIN DEM of S by computing the Delaunay triangulation of the xy-projections of points in S, which is also stored across multiple machines. With high probability, the algorithm works in O(1) rounds and the total work performed is O(n log n). Next, we describe an efficient algorithm in the MPC model for computing the contour tree of the resulting DEM. Under some assumptions on the input, the algorithm works in O(1) rounds and the total work performed is O(n log n).\",\"PeriodicalId\":20525,\"journal\":{\"name\":\"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2996913.2996952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2996913.2996952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们在大规模并行通信(MPC)模型(例如MapReduce)中提出并行算法,用于处理太大而无法在一台机器上容纳的大型地形高程数据(表示为3D点云)。特别是,给定分布在多台机器上的3D点集S,我们提出了一种简单的随机算法,通过计算S中点的xy投影的Delaunay三角剖分来构建S的TIN DEM,该算法也存储在多台机器上。在高概率下,该算法在O(1)轮内工作,执行的总工作为O(n log n)。接下来,我们描述了MPC模型中用于计算所得DEM轮廓树的有效算法。在对输入的某些假设下,该算法的工作周期为O(1)轮,执行的总工作量为O(n log n)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Massively parallel algorithms for computing TIN DEMs and contour trees for large terrains
We propose parallel algorithms in the massively parallel communication (MPC) model (e.g. MapReduce) for processing large terrain elevation data (represented as a 3D point cloud) that are too big to fit on one machine. In particular, given a set S of 3D points that is distributed across multiple machines, we present a simple randomized algorithm to construct a TIN DEM of S by computing the Delaunay triangulation of the xy-projections of points in S, which is also stored across multiple machines. With high probability, the algorithm works in O(1) rounds and the total work performed is O(n log n). Next, we describe an efficient algorithm in the MPC model for computing the contour tree of the resulting DEM. Under some assumptions on the input, the algorithm works in O(1) rounds and the total work performed is O(n log n).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信