{"title":"khovanski -算术格2的有限有理曲线","authors":"N. Ilten, Ahmad Mokhtar","doi":"10.1307/mmj/20216048","DOIUrl":null,"url":null,"abstract":"We study the existence of Khovanskii-finite valuations for rational curves of arithmetic genus two. We provide a semi-explicit description of the locus of degree n+ 2 rational curves in Pn of arithmetic genus two that admit a Khovanskii-finite valuation. Furthermore, we describe an effective method for determining if a rational curve of arithmetic genus two defined over a number field admits a Khovanskii-finite valuation. This provides a criterion for deciding if such curves admit a toric degeneration. Finally, we show that rational curves with a single unibranch singularity are always Khovanskii-finite if their arithmetic genus is sufficiently small.","PeriodicalId":49820,"journal":{"name":"Michigan Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Khovanskii-Finite Rational Curves of Arithmetic Genus 2\",\"authors\":\"N. Ilten, Ahmad Mokhtar\",\"doi\":\"10.1307/mmj/20216048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the existence of Khovanskii-finite valuations for rational curves of arithmetic genus two. We provide a semi-explicit description of the locus of degree n+ 2 rational curves in Pn of arithmetic genus two that admit a Khovanskii-finite valuation. Furthermore, we describe an effective method for determining if a rational curve of arithmetic genus two defined over a number field admits a Khovanskii-finite valuation. This provides a criterion for deciding if such curves admit a toric degeneration. Finally, we show that rational curves with a single unibranch singularity are always Khovanskii-finite if their arithmetic genus is sufficiently small.\",\"PeriodicalId\":49820,\"journal\":{\"name\":\"Michigan Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Michigan Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1307/mmj/20216048\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Michigan Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20216048","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Khovanskii-Finite Rational Curves of Arithmetic Genus 2
We study the existence of Khovanskii-finite valuations for rational curves of arithmetic genus two. We provide a semi-explicit description of the locus of degree n+ 2 rational curves in Pn of arithmetic genus two that admit a Khovanskii-finite valuation. Furthermore, we describe an effective method for determining if a rational curve of arithmetic genus two defined over a number field admits a Khovanskii-finite valuation. This provides a criterion for deciding if such curves admit a toric degeneration. Finally, we show that rational curves with a single unibranch singularity are always Khovanskii-finite if their arithmetic genus is sufficiently small.
期刊介绍:
The Michigan Mathematical Journal is available electronically through the Project Euclid web site. The electronic version is available free to all paid subscribers. The Journal must receive from institutional subscribers a list of Internet Protocol Addresses in order for members of their institutions to have access to the online version of the Journal.