{"title":"页岩气开发往复式压缩机智能故障诊断的多传感器信息融合方法","authors":"Yang Tang, Xin Yang, Bo Lei, Liu Yang, Chong Xie","doi":"10.1177/1748006x221136582","DOIUrl":null,"url":null,"abstract":"To address the problems of the poor feature extraction ability and weak data generalization ability of traditional fault diagnosis methods in reciprocating shale gas compressor fault diagnosis applications, in this study, a fault diagnosis method for reciprocating shale gas was developed. This method uses a novel optimized learning method, free energy in persistent contrastive divergence, in deep belief network learning and training. It solves the problem of the deep belief network classification ability degradation in long-term training. The root mean square error is used as the fitness function to search for the optimal parameter combination of the DBN network by using the sparrow search algorithm. At the same time, the learning rate and batch size of the deep belief network, which have a large impact on the training error, are selected for optimization. Then, the original vibration signal is preprocessed by calculating 13 different time domain indicators, and feature-level data and decision-level data are fused in a parallel superposition method to obtain a fused time domain index dataset. Finally, combined with the powerful adaptive feature extraction and nonlinear mapping ability of deep learning, the constructed sample dataset is input to the deep belief network for training, and the deep belief network based on reciprocating shale gas compressor fault diagnosis model is established.","PeriodicalId":51266,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2022-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multisensor information fusion method for intelligent fault diagnosis of reciprocating compressor in shale gas development\",\"authors\":\"Yang Tang, Xin Yang, Bo Lei, Liu Yang, Chong Xie\",\"doi\":\"10.1177/1748006x221136582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the problems of the poor feature extraction ability and weak data generalization ability of traditional fault diagnosis methods in reciprocating shale gas compressor fault diagnosis applications, in this study, a fault diagnosis method for reciprocating shale gas was developed. This method uses a novel optimized learning method, free energy in persistent contrastive divergence, in deep belief network learning and training. It solves the problem of the deep belief network classification ability degradation in long-term training. The root mean square error is used as the fitness function to search for the optimal parameter combination of the DBN network by using the sparrow search algorithm. At the same time, the learning rate and batch size of the deep belief network, which have a large impact on the training error, are selected for optimization. Then, the original vibration signal is preprocessed by calculating 13 different time domain indicators, and feature-level data and decision-level data are fused in a parallel superposition method to obtain a fused time domain index dataset. Finally, combined with the powerful adaptive feature extraction and nonlinear mapping ability of deep learning, the constructed sample dataset is input to the deep belief network for training, and the deep belief network based on reciprocating shale gas compressor fault diagnosis model is established.\",\"PeriodicalId\":51266,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/1748006x221136582\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part O-Journal of Risk and Reliability","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1748006x221136582","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Multisensor information fusion method for intelligent fault diagnosis of reciprocating compressor in shale gas development
To address the problems of the poor feature extraction ability and weak data generalization ability of traditional fault diagnosis methods in reciprocating shale gas compressor fault diagnosis applications, in this study, a fault diagnosis method for reciprocating shale gas was developed. This method uses a novel optimized learning method, free energy in persistent contrastive divergence, in deep belief network learning and training. It solves the problem of the deep belief network classification ability degradation in long-term training. The root mean square error is used as the fitness function to search for the optimal parameter combination of the DBN network by using the sparrow search algorithm. At the same time, the learning rate and batch size of the deep belief network, which have a large impact on the training error, are selected for optimization. Then, the original vibration signal is preprocessed by calculating 13 different time domain indicators, and feature-level data and decision-level data are fused in a parallel superposition method to obtain a fused time domain index dataset. Finally, combined with the powerful adaptive feature extraction and nonlinear mapping ability of deep learning, the constructed sample dataset is input to the deep belief network for training, and the deep belief network based on reciprocating shale gas compressor fault diagnosis model is established.
期刊介绍:
The Journal of Risk and Reliability is for researchers and practitioners who are involved in the field of risk analysis and reliability engineering. The remit of the Journal covers concepts, theories, principles, approaches, methods and models for the proper understanding, assessment, characterisation and management of the risk and reliability of engineering systems. The journal welcomes papers which are based on mathematical and probabilistic analysis, simulation and/or optimisation, as well as works highlighting conceptual and managerial issues. Papers that provide perspectives on current practices and methods, and how to improve these, are also welcome