{"title":"搜索和救援游戏在一个循环","authors":"T. Lidbetter, Yifan Xie","doi":"10.48550/arXiv.2208.00482","DOIUrl":null,"url":null,"abstract":"We consider a search and rescue game introduced recently by the first author. An immobile target or targets (for example, injured hikers) are hidden on a graph. The terrain is assumed to dangerous, so that when any given vertex of the graph is searched, there is a certain probability that the search will come to an end, otherwise with the complementary {\\em success probability} the search can continue. A Searcher searches the graph with the aim of finding all the targets with maximum probability. Here, we focus on the game in the case that the graph is a cycle. In the case that there is only one target, we solve the game for equal success probabilities, and for a class of games with unequal success probabilities. For multiple targets and equal success probabilities, we give a solution for an adaptive Searcher and a solution in a special case for a non-adaptive Searcher. We also consider a continuous version of the model, giving a full solution for an adaptive Searcher and approximately optimal solutions in the non-adaptive case.","PeriodicalId":23063,"journal":{"name":"Theor. Comput. Sci.","volume":"43 1","pages":"114016"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Search and Rescue Game on a Cycle\",\"authors\":\"T. Lidbetter, Yifan Xie\",\"doi\":\"10.48550/arXiv.2208.00482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a search and rescue game introduced recently by the first author. An immobile target or targets (for example, injured hikers) are hidden on a graph. The terrain is assumed to dangerous, so that when any given vertex of the graph is searched, there is a certain probability that the search will come to an end, otherwise with the complementary {\\\\em success probability} the search can continue. A Searcher searches the graph with the aim of finding all the targets with maximum probability. Here, we focus on the game in the case that the graph is a cycle. In the case that there is only one target, we solve the game for equal success probabilities, and for a class of games with unequal success probabilities. For multiple targets and equal success probabilities, we give a solution for an adaptive Searcher and a solution in a special case for a non-adaptive Searcher. We also consider a continuous version of the model, giving a full solution for an adaptive Searcher and approximately optimal solutions in the non-adaptive case.\",\"PeriodicalId\":23063,\"journal\":{\"name\":\"Theor. Comput. Sci.\",\"volume\":\"43 1\",\"pages\":\"114016\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theor. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2208.00482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theor. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.00482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We consider a search and rescue game introduced recently by the first author. An immobile target or targets (for example, injured hikers) are hidden on a graph. The terrain is assumed to dangerous, so that when any given vertex of the graph is searched, there is a certain probability that the search will come to an end, otherwise with the complementary {\em success probability} the search can continue. A Searcher searches the graph with the aim of finding all the targets with maximum probability. Here, we focus on the game in the case that the graph is a cycle. In the case that there is only one target, we solve the game for equal success probabilities, and for a class of games with unequal success probabilities. For multiple targets and equal success probabilities, we give a solution for an adaptive Searcher and a solution in a special case for a non-adaptive Searcher. We also consider a continuous version of the model, giving a full solution for an adaptive Searcher and approximately optimal solutions in the non-adaptive case.