黎曼曲面上Kuramochi的泛函分离度量

Hiroshi Tanaka
{"title":"黎曼曲面上Kuramochi的泛函分离度量","authors":"Hiroshi Tanaka","doi":"10.32917/HMJ/1206138656","DOIUrl":null,"url":null,"abstract":"In order to extend Fatou's and Beurling's theorems to arbitrary Riemann surfaces, Z. Kuramochi introduced ([4]; also see [5] and [7]) two notions of function-theoretic separative metrics, i.e., H. B. and H. D. separative metrics. Since extended Fatou's and Beurling's theorems are stated in terms of compactifications of an open Riemann surface, we shall define separative compactifications rather than separative metrics. In this paper we shall give necessary and sufficient conditions for a compactification to be H. B. or H. D. separative, in terms of the Wiener or the Royden compactification, respectively. Our characterizations are given in a simple form compared with the original definition by Z. Kuramochi and may make it easier to comprehend the meaning of these notions. In §1, we shall discuss compactifications of a hyperbolic Riemann surface R. §2 (resp. §3) is devoted to the study of harmonic measures (resp. capacitary potentials) which were defined by Z. Kuramochi (Q3]). We shall investigate their properties on the Wiener or the Royden boundary of R. In §4 (resp. §5), we shall give our main theorems en H. B. (resp. H. D.) separative compactifications and study the relation between H. B. and H. D. separative compactifications (§5). As an application, we shall show in §6: 1) for Fatou's theorem, Kuramochi's result ([4], [5], [7]) and Constantinescu and Cornea's result (Satz 14.4 in [2J) are equivalent; 2) for Beurling's theorem, Kuramochi's result ( M , [5], [7]) is independent of a similar result by Constantinescu and Cornea (Satz 18.1 in [2]).","PeriodicalId":17080,"journal":{"name":"Journal of science of the Hiroshima University Ser. A Mathematics, physics, chemistry","volume":"7 1","pages":"309-330"},"PeriodicalIF":0.0000,"publicationDate":"1968-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On Kuramochi's function-theoretic separative metrics on Riemann surfaces\",\"authors\":\"Hiroshi Tanaka\",\"doi\":\"10.32917/HMJ/1206138656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to extend Fatou's and Beurling's theorems to arbitrary Riemann surfaces, Z. Kuramochi introduced ([4]; also see [5] and [7]) two notions of function-theoretic separative metrics, i.e., H. B. and H. D. separative metrics. Since extended Fatou's and Beurling's theorems are stated in terms of compactifications of an open Riemann surface, we shall define separative compactifications rather than separative metrics. In this paper we shall give necessary and sufficient conditions for a compactification to be H. B. or H. D. separative, in terms of the Wiener or the Royden compactification, respectively. Our characterizations are given in a simple form compared with the original definition by Z. Kuramochi and may make it easier to comprehend the meaning of these notions. In §1, we shall discuss compactifications of a hyperbolic Riemann surface R. §2 (resp. §3) is devoted to the study of harmonic measures (resp. capacitary potentials) which were defined by Z. Kuramochi (Q3]). We shall investigate their properties on the Wiener or the Royden boundary of R. In §4 (resp. §5), we shall give our main theorems en H. B. (resp. H. D.) separative compactifications and study the relation between H. B. and H. D. separative compactifications (§5). As an application, we shall show in §6: 1) for Fatou's theorem, Kuramochi's result ([4], [5], [7]) and Constantinescu and Cornea's result (Satz 14.4 in [2J) are equivalent; 2) for Beurling's theorem, Kuramochi's result ( M , [5], [7]) is independent of a similar result by Constantinescu and Cornea (Satz 18.1 in [2]).\",\"PeriodicalId\":17080,\"journal\":{\"name\":\"Journal of science of the Hiroshima University Ser. A Mathematics, physics, chemistry\",\"volume\":\"7 1\",\"pages\":\"309-330\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1968-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of science of the Hiroshima University Ser. A Mathematics, physics, chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32917/HMJ/1206138656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of science of the Hiroshima University Ser. A Mathematics, physics, chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32917/HMJ/1206138656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

为了将Fatou定理和Beurling定理推广到任意黎曼曲面,Z. Kuramochi引入([4];也见[5]和[7])两个函数论分离度量的概念,即h.b.和h.d.分离度量。由于扩展的Fatou定理和Beurling定理是用开放黎曼曲面的紧化来表述的,我们将定义分离紧化而不是分离度量。本文分别从Wiener紧化和Royden紧化两个方面给出了一个紧化是h - b或h - d分离的充分必要条件。与Z. Kuramochi的原始定义相比,我们的描述以一种简单的形式给出,这可能更容易理解这些概念的含义。在§1中,我们将讨论双曲黎曼曲面R.§2的紧化。§3)致力于谐波测度的研究。容量电位),由Z. Kuramochi (Q3])定义。我们将研究它们在r的Wiener或Royden边界上的性质。§5),我们将给出关于H. B.的主要定理。H. D.)分离紧化,并研究H. B.和H. D.分离紧化之间的关系(§5)。作为一个应用,我们将在§6.1)中证明,对于Fatou定理,Kuramochi的结果([4],[5],[7])与Constantinescu和Cornea的结果(Satz 14.4 in [2J])是等价的;2)对于Beurling定理,Kuramochi的结果(M,[5],[7])独立于Constantinescu和Cornea (Satz 18.1 in[2])的类似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Kuramochi's function-theoretic separative metrics on Riemann surfaces
In order to extend Fatou's and Beurling's theorems to arbitrary Riemann surfaces, Z. Kuramochi introduced ([4]; also see [5] and [7]) two notions of function-theoretic separative metrics, i.e., H. B. and H. D. separative metrics. Since extended Fatou's and Beurling's theorems are stated in terms of compactifications of an open Riemann surface, we shall define separative compactifications rather than separative metrics. In this paper we shall give necessary and sufficient conditions for a compactification to be H. B. or H. D. separative, in terms of the Wiener or the Royden compactification, respectively. Our characterizations are given in a simple form compared with the original definition by Z. Kuramochi and may make it easier to comprehend the meaning of these notions. In §1, we shall discuss compactifications of a hyperbolic Riemann surface R. §2 (resp. §3) is devoted to the study of harmonic measures (resp. capacitary potentials) which were defined by Z. Kuramochi (Q3]). We shall investigate their properties on the Wiener or the Royden boundary of R. In §4 (resp. §5), we shall give our main theorems en H. B. (resp. H. D.) separative compactifications and study the relation between H. B. and H. D. separative compactifications (§5). As an application, we shall show in §6: 1) for Fatou's theorem, Kuramochi's result ([4], [5], [7]) and Constantinescu and Cornea's result (Satz 14.4 in [2J) are equivalent; 2) for Beurling's theorem, Kuramochi's result ( M , [5], [7]) is independent of a similar result by Constantinescu and Cornea (Satz 18.1 in [2]).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信