AttentiveLearner:基于内隐认知状态推断的自适应移动MOOC学习

Xiang Xiao, Phuong Pham, Jingtao Wang
{"title":"AttentiveLearner:基于内隐认知状态推断的自适应移动MOOC学习","authors":"Xiang Xiao, Phuong Pham, Jingtao Wang","doi":"10.1145/2818346.2823297","DOIUrl":null,"url":null,"abstract":"This demo presents AttentiveLearner, a mobile learning system optimized for consuming lecture videos in Massive Open Online Courses (MOOCs) and flipped classrooms. AttentiveLearner uses on-lens finger gestures for video control and captures learners' physiological states through implicit heart rate tracking on unmodified mobile phones. Through three user studies to date, we found AttentiveLearner easy to learn, and intuitive to use. The heart beat waveforms captured by AttentiveLearner can be used to infer learners' cognitive states and attention. AttentiveLearner may serve as a promising supplemental feedback channel orthogonal to today's learning analytics technologies.","PeriodicalId":20486,"journal":{"name":"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"AttentiveLearner: Adaptive Mobile MOOC Learning via Implicit Cognitive States Inference\",\"authors\":\"Xiang Xiao, Phuong Pham, Jingtao Wang\",\"doi\":\"10.1145/2818346.2823297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This demo presents AttentiveLearner, a mobile learning system optimized for consuming lecture videos in Massive Open Online Courses (MOOCs) and flipped classrooms. AttentiveLearner uses on-lens finger gestures for video control and captures learners' physiological states through implicit heart rate tracking on unmodified mobile phones. Through three user studies to date, we found AttentiveLearner easy to learn, and intuitive to use. The heart beat waveforms captured by AttentiveLearner can be used to infer learners' cognitive states and attention. AttentiveLearner may serve as a promising supplemental feedback channel orthogonal to today's learning analytics technologies.\",\"PeriodicalId\":20486,\"journal\":{\"name\":\"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2818346.2823297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2818346.2823297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本演示展示了AttentiveLearner,这是一款针对大规模开放在线课程(MOOCs)和翻转课堂中消费讲座视频进行了优化的移动学习系统。AttentiveLearner使用镜头上的手指手势进行视频控制,并通过未修改的手机上的隐式心率跟踪来捕捉学习者的生理状态。通过迄今为止的三个用户研究,我们发现AttentiveLearner易于学习,使用直观。AttentiveLearner捕捉到的心跳波形可以用来推断学习者的认知状态和注意力。AttentiveLearner可以作为一个有前途的补充反馈渠道,与今天的学习分析技术正交。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AttentiveLearner: Adaptive Mobile MOOC Learning via Implicit Cognitive States Inference
This demo presents AttentiveLearner, a mobile learning system optimized for consuming lecture videos in Massive Open Online Courses (MOOCs) and flipped classrooms. AttentiveLearner uses on-lens finger gestures for video control and captures learners' physiological states through implicit heart rate tracking on unmodified mobile phones. Through three user studies to date, we found AttentiveLearner easy to learn, and intuitive to use. The heart beat waveforms captured by AttentiveLearner can be used to infer learners' cognitive states and attention. AttentiveLearner may serve as a promising supplemental feedback channel orthogonal to today's learning analytics technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信