基于共轭方向粒子群优化的部分绝热数据动力学参数确定方法

Xiaoqiao Zhao, Hao Wang, Wen-qian Wu, Wang-hua Chen
{"title":"基于共轭方向粒子群优化的部分绝热数据动力学参数确定方法","authors":"Xiaoqiao Zhao, Hao Wang, Wen-qian Wu, Wang-hua Chen","doi":"10.18178/ijcea.2020.11.4.785","DOIUrl":null,"url":null,"abstract":"Due to the limited detection range of the adiabatic equipment, it is difficult to get complete experimental curve of some materials and calculate the kinetic parameters. In this work, the conjugate direction particle swarm optimization (CDPSO) approach, as a global stochastic optimization algorithm, is proposed to estimate the kinetic parameters and complete experimental curve from part of adiabatic calorimetric data. This algorithm combines the conjugate direction algorithm (CD) which has the ability to escape from the local extremum and the global optimization ability of the particle swarm optimization (PSO) which finds the globally optimal solutions. One case was used to verify this method: 20% DTBP in toluene decompositions under adiabatic conditions. Comparing the experimental and calculated complete temperature curve, the accuracy of the fitted kinetic parameters calculated by no less than 70% temperature rise rate proportion of data is verified. The value of TD24 is well-deviated even used 10% proportion of data. The case reasonably proves the effectiveness of CDPSO algorithm in the estimation of kinetic parameters from part of adiabatic data.","PeriodicalId":13949,"journal":{"name":"International Journal of Chemical Engineering and Applications","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conjugate Direction Particle Swarm Optimization Based Approach to Determine Kinetic Parameters from Part of Adiabatic Data\",\"authors\":\"Xiaoqiao Zhao, Hao Wang, Wen-qian Wu, Wang-hua Chen\",\"doi\":\"10.18178/ijcea.2020.11.4.785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the limited detection range of the adiabatic equipment, it is difficult to get complete experimental curve of some materials and calculate the kinetic parameters. In this work, the conjugate direction particle swarm optimization (CDPSO) approach, as a global stochastic optimization algorithm, is proposed to estimate the kinetic parameters and complete experimental curve from part of adiabatic calorimetric data. This algorithm combines the conjugate direction algorithm (CD) which has the ability to escape from the local extremum and the global optimization ability of the particle swarm optimization (PSO) which finds the globally optimal solutions. One case was used to verify this method: 20% DTBP in toluene decompositions under adiabatic conditions. Comparing the experimental and calculated complete temperature curve, the accuracy of the fitted kinetic parameters calculated by no less than 70% temperature rise rate proportion of data is verified. The value of TD24 is well-deviated even used 10% proportion of data. The case reasonably proves the effectiveness of CDPSO algorithm in the estimation of kinetic parameters from part of adiabatic data.\",\"PeriodicalId\":13949,\"journal\":{\"name\":\"International Journal of Chemical Engineering and Applications\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Engineering and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18178/ijcea.2020.11.4.785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Engineering and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18178/ijcea.2020.11.4.785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于绝热设备的检测范围有限,一些材料的完整实验曲线很难得到,动力学参数的计算也比较困难。本文提出了一种全局随机优化算法——共轭方向粒子群优化算法(CDPSO),用于从部分绝热量热数据中估计动力学参数和完成实验曲线。该算法结合了具有逃避局部极值能力的共轭方向算法(CD)和具有全局最优解的粒子群算法(PSO)的全局优化能力。用一个实例验证了该方法:在绝热条件下甲苯分解20% DTBP。通过对比实验和计算的完整温度曲线,验证了按不低于70%的温升率比例计算的拟合动力学参数的准确性。即使使用10%的数据比例,TD24的值也有很好的偏差。算例合理地证明了CDPSO算法从部分绝热数据估计动力学参数的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conjugate Direction Particle Swarm Optimization Based Approach to Determine Kinetic Parameters from Part of Adiabatic Data
Due to the limited detection range of the adiabatic equipment, it is difficult to get complete experimental curve of some materials and calculate the kinetic parameters. In this work, the conjugate direction particle swarm optimization (CDPSO) approach, as a global stochastic optimization algorithm, is proposed to estimate the kinetic parameters and complete experimental curve from part of adiabatic calorimetric data. This algorithm combines the conjugate direction algorithm (CD) which has the ability to escape from the local extremum and the global optimization ability of the particle swarm optimization (PSO) which finds the globally optimal solutions. One case was used to verify this method: 20% DTBP in toluene decompositions under adiabatic conditions. Comparing the experimental and calculated complete temperature curve, the accuracy of the fitted kinetic parameters calculated by no less than 70% temperature rise rate proportion of data is verified. The value of TD24 is well-deviated even used 10% proportion of data. The case reasonably proves the effectiveness of CDPSO algorithm in the estimation of kinetic parameters from part of adiabatic data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信