三甲基硅烷流速对光纤温度传感器用SiC薄膜生长的影响

L. Cheng, A. Steckl, J. Scofield
{"title":"三甲基硅烷流速对光纤温度传感器用SiC薄膜生长的影响","authors":"L. Cheng, A. Steckl, J. Scofield","doi":"10.1109/JMEMS.2003.820282","DOIUrl":null,"url":null,"abstract":"We have investigated the effect of trimethylsilane ([(CH/sub 3/)/sub 3/SiH] or 3MS) flow rate on the growth of SiC thin-film on single-crystal sapphire substrate for fiber-optic temperature sensor. The SiC film thickness was in the range of 2-3 /spl mu/m. The variation of the 3MS flow rate affected the structural properties of the SiC films. This, in turn, changed the optical properties and temperature sensing performance of the sensors. Optical reflection from the SiC thin-film Fabry-Pe/spl acute/rot interferometers showed one-way phase shifts in resonant minima on all measured samples. Linear fits to the resonant minima (at 660 to 710 nm) versus temperature provide the corresponding thermal expansion coefficient, /spl kappa//sub /spl phi//, of 1.7-1.9/spl times/10/sup -5///spl deg/C. With the optimized 3MS flow rate, the SiC temperature sensor exhibits a temperature accuracy of /spl plusmn/2.8/spl deg/C from 22 to 540/spl deg/C. The short-term SiC sensor stability at 532/spl deg/C for two weeks shows a very small standard deviation of 0.97/spl deg/C.","PeriodicalId":13438,"journal":{"name":"IEEE\\/ASME Journal of Microelectromechanical Systems","volume":"10 1","pages":"797-803"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Effect of trimethylsilane flow rate on the growth of SiC thin-films for fiber-optic temperature sensors\",\"authors\":\"L. Cheng, A. Steckl, J. Scofield\",\"doi\":\"10.1109/JMEMS.2003.820282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have investigated the effect of trimethylsilane ([(CH/sub 3/)/sub 3/SiH] or 3MS) flow rate on the growth of SiC thin-film on single-crystal sapphire substrate for fiber-optic temperature sensor. The SiC film thickness was in the range of 2-3 /spl mu/m. The variation of the 3MS flow rate affected the structural properties of the SiC films. This, in turn, changed the optical properties and temperature sensing performance of the sensors. Optical reflection from the SiC thin-film Fabry-Pe/spl acute/rot interferometers showed one-way phase shifts in resonant minima on all measured samples. Linear fits to the resonant minima (at 660 to 710 nm) versus temperature provide the corresponding thermal expansion coefficient, /spl kappa//sub /spl phi//, of 1.7-1.9/spl times/10/sup -5///spl deg/C. With the optimized 3MS flow rate, the SiC temperature sensor exhibits a temperature accuracy of /spl plusmn/2.8/spl deg/C from 22 to 540/spl deg/C. The short-term SiC sensor stability at 532/spl deg/C for two weeks shows a very small standard deviation of 0.97/spl deg/C.\",\"PeriodicalId\":13438,\"journal\":{\"name\":\"IEEE\\\\/ASME Journal of Microelectromechanical Systems\",\"volume\":\"10 1\",\"pages\":\"797-803\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE\\\\/ASME Journal of Microelectromechanical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JMEMS.2003.820282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE\\/ASME Journal of Microelectromechanical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JMEMS.2003.820282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

研究了三甲基硅烷([(CH/sub 3/)/sub 3/SiH]或3MS)流速对光纤温度传感器用单晶蓝宝石衬底上SiC薄膜生长的影响。SiC膜厚度在2-3 /spl mu/m范围内。3MS流动速率的变化影响了SiC薄膜的结构性能。这反过来又改变了传感器的光学特性和温度传感性能。SiC薄膜Fabry-Pe/spl急性/rot干涉仪的光学反射在所有测量样品上都显示出谐振最小值的单向相移。对谐振最小值(660至710 nm)与温度的线性拟合提供了相应的热膨胀系数/spl kappa//sub /spl phi//,为1.7-1.9/spl乘以/10/sup -5/ spl度/C。在优化的3MS流量下,SiC温度传感器在22至540/spl℃范围内的温度精度为/spl plusmn/2.8/spl℃。SiC传感器在532/spl°C下持续两周的短期稳定性显示出非常小的标准偏差0.97/spl°C。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of trimethylsilane flow rate on the growth of SiC thin-films for fiber-optic temperature sensors
We have investigated the effect of trimethylsilane ([(CH/sub 3/)/sub 3/SiH] or 3MS) flow rate on the growth of SiC thin-film on single-crystal sapphire substrate for fiber-optic temperature sensor. The SiC film thickness was in the range of 2-3 /spl mu/m. The variation of the 3MS flow rate affected the structural properties of the SiC films. This, in turn, changed the optical properties and temperature sensing performance of the sensors. Optical reflection from the SiC thin-film Fabry-Pe/spl acute/rot interferometers showed one-way phase shifts in resonant minima on all measured samples. Linear fits to the resonant minima (at 660 to 710 nm) versus temperature provide the corresponding thermal expansion coefficient, /spl kappa//sub /spl phi//, of 1.7-1.9/spl times/10/sup -5///spl deg/C. With the optimized 3MS flow rate, the SiC temperature sensor exhibits a temperature accuracy of /spl plusmn/2.8/spl deg/C from 22 to 540/spl deg/C. The short-term SiC sensor stability at 532/spl deg/C for two weeks shows a very small standard deviation of 0.97/spl deg/C.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信