N. Ahmad, M. Badaruddin, N. Yuliasari, F. Arsyad, A. Lesbani
{"title":"层状双氢氧化物改性多金属氧酸盐催化剂对二苯并噻吩的高效催化氧化脱硫","authors":"N. Ahmad, M. Badaruddin, N. Yuliasari, F. Arsyad, A. Lesbani","doi":"10.9767/bcrec.17.4.16373.821-830","DOIUrl":null,"url":null,"abstract":"Layered double hydroxide-modified polyoxometalate (ZnAl-PW) was prepared and used for the oxidative desulfurization of dibenzothiophene. XRD patterns of ZnAl-LDH and PW are still present in ZnAl-PW. The bands of ZnAl-PW in wavenumber 3276, 1637, 1363, 1050, 952, 887, and 667 cm-1. The typical surface of ZnAl-LDH and ZnAl-PW can be observed not smooth in different sized with irregular shapes. The average diameter distribution of ZnAl-LDH and ZnAl-PW is 14 nm and 47 nm, respectively. For dibenzothiophene with 500 ppm, conversion on ZnAl-LDH, PW, and ZnAl-PW was 94.71%, 95.88%, and 99.16%, respectively. Conversion of dibenzothiophene in line with the acidity of ZnAl-LDH, PW, and ZnAl-PW were 0.399, 1.635, and 3.023 mmol/gram, respectively. The most effective catalyst dosage for the desulfurization of dibenzothiophene on ZnAl-LDH, PW, and ZnAl-PW is 0.25 g. The unchanged dibenzothiophene concentration indicates a heterogeneous system. ZnAl-LDH, PW, and ZnAl-PW are truly heterogeneous catalysts. After 3 cycles of oxidative desulfurization, the percentage conversion of dibenzothiophene on ZnAl-LDH, PW, and ZnAl-PW were 77.42 %, 65.98%, and 86.38%, respectively. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). ","PeriodicalId":9366,"journal":{"name":"Bulletin of Chemical Reaction Engineering & Catalysis","volume":"92 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Highly Efficient Catalytic Oxidative Desulfurization of Dibenzothiophene using Layered Double Hydroxide Modified Polyoxometalate Catalyst\",\"authors\":\"N. Ahmad, M. Badaruddin, N. Yuliasari, F. Arsyad, A. Lesbani\",\"doi\":\"10.9767/bcrec.17.4.16373.821-830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Layered double hydroxide-modified polyoxometalate (ZnAl-PW) was prepared and used for the oxidative desulfurization of dibenzothiophene. XRD patterns of ZnAl-LDH and PW are still present in ZnAl-PW. The bands of ZnAl-PW in wavenumber 3276, 1637, 1363, 1050, 952, 887, and 667 cm-1. The typical surface of ZnAl-LDH and ZnAl-PW can be observed not smooth in different sized with irregular shapes. The average diameter distribution of ZnAl-LDH and ZnAl-PW is 14 nm and 47 nm, respectively. For dibenzothiophene with 500 ppm, conversion on ZnAl-LDH, PW, and ZnAl-PW was 94.71%, 95.88%, and 99.16%, respectively. Conversion of dibenzothiophene in line with the acidity of ZnAl-LDH, PW, and ZnAl-PW were 0.399, 1.635, and 3.023 mmol/gram, respectively. The most effective catalyst dosage for the desulfurization of dibenzothiophene on ZnAl-LDH, PW, and ZnAl-PW is 0.25 g. The unchanged dibenzothiophene concentration indicates a heterogeneous system. ZnAl-LDH, PW, and ZnAl-PW are truly heterogeneous catalysts. After 3 cycles of oxidative desulfurization, the percentage conversion of dibenzothiophene on ZnAl-LDH, PW, and ZnAl-PW were 77.42 %, 65.98%, and 86.38%, respectively. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). \",\"PeriodicalId\":9366,\"journal\":{\"name\":\"Bulletin of Chemical Reaction Engineering & Catalysis\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Chemical Reaction Engineering & Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9767/bcrec.17.4.16373.821-830\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Chemical Reaction Engineering & Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9767/bcrec.17.4.16373.821-830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Highly Efficient Catalytic Oxidative Desulfurization of Dibenzothiophene using Layered Double Hydroxide Modified Polyoxometalate Catalyst
Layered double hydroxide-modified polyoxometalate (ZnAl-PW) was prepared and used for the oxidative desulfurization of dibenzothiophene. XRD patterns of ZnAl-LDH and PW are still present in ZnAl-PW. The bands of ZnAl-PW in wavenumber 3276, 1637, 1363, 1050, 952, 887, and 667 cm-1. The typical surface of ZnAl-LDH and ZnAl-PW can be observed not smooth in different sized with irregular shapes. The average diameter distribution of ZnAl-LDH and ZnAl-PW is 14 nm and 47 nm, respectively. For dibenzothiophene with 500 ppm, conversion on ZnAl-LDH, PW, and ZnAl-PW was 94.71%, 95.88%, and 99.16%, respectively. Conversion of dibenzothiophene in line with the acidity of ZnAl-LDH, PW, and ZnAl-PW were 0.399, 1.635, and 3.023 mmol/gram, respectively. The most effective catalyst dosage for the desulfurization of dibenzothiophene on ZnAl-LDH, PW, and ZnAl-PW is 0.25 g. The unchanged dibenzothiophene concentration indicates a heterogeneous system. ZnAl-LDH, PW, and ZnAl-PW are truly heterogeneous catalysts. After 3 cycles of oxidative desulfurization, the percentage conversion of dibenzothiophene on ZnAl-LDH, PW, and ZnAl-PW were 77.42 %, 65.98%, and 86.38%, respectively. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).