非线性脉冲Volterra-Fredholm积分微分方程。

Pallavi U. Shikhare, Kishor D. Kucche, J. Sousa
{"title":"非线性脉冲Volterra-Fredholm积分微分方程。","authors":"Pallavi U. Shikhare, Kishor D. Kucche, J. Sousa","doi":"10.22075/IJNAA.2020.20005.2117","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate existence and uniqueness of solutions of nonlinear Volterra-Fredholm impulsive integrodifferential equations. Utilizing theory of Picard operators we examine data dependence of solutions on initial conditions and on nonlinear functions involved in integrodifferential equations. Further, we extend the integral inequality for piece-wise continuous functions to mixed case and apply it to investigate the dependence of solution on initial data through $\\epsilon$-approximate solutions. It is seen that the uniqueness and dependency results got by means of integral inequity requires less restrictions on the functions involved in the equations than that required through Picard operators theory.","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Nonlinear Impulsive Volterra-Fredholm Integrodifferential Equations.\",\"authors\":\"Pallavi U. Shikhare, Kishor D. Kucche, J. Sousa\",\"doi\":\"10.22075/IJNAA.2020.20005.2117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate existence and uniqueness of solutions of nonlinear Volterra-Fredholm impulsive integrodifferential equations. Utilizing theory of Picard operators we examine data dependence of solutions on initial conditions and on nonlinear functions involved in integrodifferential equations. Further, we extend the integral inequality for piece-wise continuous functions to mixed case and apply it to investigate the dependence of solution on initial data through $\\\\epsilon$-approximate solutions. It is seen that the uniqueness and dependency results got by means of integral inequity requires less restrictions on the functions involved in the equations than that required through Picard operators theory.\",\"PeriodicalId\":8451,\"journal\":{\"name\":\"arXiv: Classical Analysis and ODEs\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22075/IJNAA.2020.20005.2117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22075/IJNAA.2020.20005.2117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类非线性Volterra-Fredholm脉冲积分微分方程解的存在唯一性。利用皮卡德算子理论,研究了积分微分方程解对初始条件和非线性函数的数据依赖性。进一步,我们将分段连续函数的积分不等式推广到混合情况,并应用它通过$\epsilon$-近似解来研究解对初始数据的依赖性。由此可见,利用积分不等式得到的唯一性和相依性结果比利用皮卡德算子理论得到的结果对方程中所涉及的函数的限制更少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Nonlinear Impulsive Volterra-Fredholm Integrodifferential Equations.
In this paper, we investigate existence and uniqueness of solutions of nonlinear Volterra-Fredholm impulsive integrodifferential equations. Utilizing theory of Picard operators we examine data dependence of solutions on initial conditions and on nonlinear functions involved in integrodifferential equations. Further, we extend the integral inequality for piece-wise continuous functions to mixed case and apply it to investigate the dependence of solution on initial data through $\epsilon$-approximate solutions. It is seen that the uniqueness and dependency results got by means of integral inequity requires less restrictions on the functions involved in the equations than that required through Picard operators theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信