{"title":"一个穿孔双曲黎曼曲面的预设负高斯曲率的完全共形度量","authors":"Rukmini Dey","doi":"10.1007/BF02829849","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":56090,"journal":{"name":"Proceedings of the Indian Academy of Sciences-Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2004-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A complete conformal metric of preassigned negative Gaussian curvature for a punctured hyperbolic Riemann surface\",\"authors\":\"Rukmini Dey\",\"doi\":\"10.1007/BF02829849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":56090,\"journal\":{\"name\":\"Proceedings of the Indian Academy of Sciences-Mathematical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2004-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Indian Academy of Sciences-Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/BF02829849\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Indian Academy of Sciences-Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/BF02829849","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
期刊介绍:
This journal publishes papers covering current research in mathematics. Critical reviews of important fields are also published. Papers in applied areas are considered for publication only on the basis of their mathematical content. The journal also features special issues devoted to advances in specific areas of mathematics.