基于决策图的Haar小波变换技术

J.P. Hansen, M. Sekine
{"title":"基于决策图的Haar小波变换技术","authors":"J.P. Hansen, M. Sekine","doi":"10.1109/ICICS.1997.647057","DOIUrl":null,"url":null,"abstract":"This paper describes a new data structure called the \"Haar Spectral Diagram\" (or HSD) useful for representing the Haar spectrum of Boolean functions. An alternative ordering of Haar coefficients is used to represent the Haar transform matrix in terms of a Kronecker product yielding a natural decision-diagram based representation. The resulting graph is a point-decomposition of the Haar spectrum using \"0-element\" edge values. For incompletely specified functions, the Haar spectrum represented as an HSD is shown to require no more nodes than the ROBDD for the same function, and for completely specified functions, the HSD is shown to be isomorphic to the ROBDD.","PeriodicalId":71361,"journal":{"name":"信息通信技术","volume":"89 1","pages":"59-63 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Decision diagram based techniques for the Haar wavelet transform\",\"authors\":\"J.P. Hansen, M. Sekine\",\"doi\":\"10.1109/ICICS.1997.647057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a new data structure called the \\\"Haar Spectral Diagram\\\" (or HSD) useful for representing the Haar spectrum of Boolean functions. An alternative ordering of Haar coefficients is used to represent the Haar transform matrix in terms of a Kronecker product yielding a natural decision-diagram based representation. The resulting graph is a point-decomposition of the Haar spectrum using \\\"0-element\\\" edge values. For incompletely specified functions, the Haar spectrum represented as an HSD is shown to require no more nodes than the ROBDD for the same function, and for completely specified functions, the HSD is shown to be isomorphic to the ROBDD.\",\"PeriodicalId\":71361,\"journal\":{\"name\":\"信息通信技术\",\"volume\":\"89 1\",\"pages\":\"59-63 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"信息通信技术\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICS.1997.647057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"信息通信技术","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ICICS.1997.647057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

本文描述了一种新的数据结构,称为“哈尔谱图”(HSD),用于表示布尔函数的哈尔谱。Haar系数的另一种排序被用来用Kronecker积表示Haar变换矩阵,从而产生基于决策图的自然表示。得到的图是使用“0元素”边值对哈尔谱进行点分解。对于不完全指定的函数,表示为HSD的Haar谱显示为相同函数所需的节点数量不超过ROBDD,对于完全指定的函数,HSD显示为与ROBDD同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decision diagram based techniques for the Haar wavelet transform
This paper describes a new data structure called the "Haar Spectral Diagram" (or HSD) useful for representing the Haar spectrum of Boolean functions. An alternative ordering of Haar coefficients is used to represent the Haar transform matrix in terms of a Kronecker product yielding a natural decision-diagram based representation. The resulting graph is a point-decomposition of the Haar spectrum using "0-element" edge values. For incompletely specified functions, the Haar spectrum represented as an HSD is shown to require no more nodes than the ROBDD for the same function, and for completely specified functions, the HSD is shown to be isomorphic to the ROBDD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
1369
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信