{"title":"加权卵石行走自动机的逻辑表征","authors":"B. Bollig, P. Gastin, B. Monmege, M. Zeitoun","doi":"10.1145/2603088.2603118","DOIUrl":null,"url":null,"abstract":"Weighted automata are a conservative quantitative extension of finite automata that enjoys applications, e.g., in language processing and speech recognition. Their expressive power, however, appears to be limited, especially when they are applied to more general structures than words, such as graphs. To address this drawback, weighted automata have recently been generalized to weighted pebble walking automata, which proved useful as a tool for the specification and evaluation of quantitative properties over words and nested words. In this paper, we establish the expressive power of weighted pebble walking automata in terms of transitive closure logic, lifting a similar result by Engelfriet and Hoogeboom from the Boolean case to a quantitative setting. This result applies to general classes of graphs, including all the aforementioned classes.","PeriodicalId":20649,"journal":{"name":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Logical characterization of weighted pebble walking automata\",\"authors\":\"B. Bollig, P. Gastin, B. Monmege, M. Zeitoun\",\"doi\":\"10.1145/2603088.2603118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Weighted automata are a conservative quantitative extension of finite automata that enjoys applications, e.g., in language processing and speech recognition. Their expressive power, however, appears to be limited, especially when they are applied to more general structures than words, such as graphs. To address this drawback, weighted automata have recently been generalized to weighted pebble walking automata, which proved useful as a tool for the specification and evaluation of quantitative properties over words and nested words. In this paper, we establish the expressive power of weighted pebble walking automata in terms of transitive closure logic, lifting a similar result by Engelfriet and Hoogeboom from the Boolean case to a quantitative setting. This result applies to general classes of graphs, including all the aforementioned classes.\",\"PeriodicalId\":20649,\"journal\":{\"name\":\"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2603088.2603118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2603088.2603118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Logical characterization of weighted pebble walking automata
Weighted automata are a conservative quantitative extension of finite automata that enjoys applications, e.g., in language processing and speech recognition. Their expressive power, however, appears to be limited, especially when they are applied to more general structures than words, such as graphs. To address this drawback, weighted automata have recently been generalized to weighted pebble walking automata, which proved useful as a tool for the specification and evaluation of quantitative properties over words and nested words. In this paper, we establish the expressive power of weighted pebble walking automata in terms of transitive closure logic, lifting a similar result by Engelfriet and Hoogeboom from the Boolean case to a quantitative setting. This result applies to general classes of graphs, including all the aforementioned classes.