{"title":"忆阻器puf:新一代基于内存的物理不可克隆功能","authors":"Patrick Koeberl, Ünal Koçabas, A. Sadeghi","doi":"10.7873/DATE.2013.096","DOIUrl":null,"url":null,"abstract":"Memristors are emerging as a potential candidate for next-generation memory technologies, promising to deliver non-volatility at performance and density targets which were previously the domain of SRAM and DRAM. Silicon Physically Unclonable Functions (PUFs) have been introduced as a relatively new security primitive which exploit manufacturing variation resulting from the IC fabrication process to uniquely fingerprint a device instance or generate device-specific cryptographic key material. While silicon PUFs have been proposed which build on traditional memory structures, in particular SRAM, in this paper we present a memristor-based PUF which utilizes a weak-write mechanism to obtain cell behaviour which is influenced by process variation and hence usable as a PUF response. Using a model-based approach we evaluate memristor PUFs under random process variations and present results on the performance of this new PUF variant.","PeriodicalId":6310,"journal":{"name":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"115 1","pages":"428-431"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"114","resultStr":"{\"title\":\"Memristor PUFs: A new generation of memory-based Physically Unclonable Functions\",\"authors\":\"Patrick Koeberl, Ünal Koçabas, A. Sadeghi\",\"doi\":\"10.7873/DATE.2013.096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Memristors are emerging as a potential candidate for next-generation memory technologies, promising to deliver non-volatility at performance and density targets which were previously the domain of SRAM and DRAM. Silicon Physically Unclonable Functions (PUFs) have been introduced as a relatively new security primitive which exploit manufacturing variation resulting from the IC fabrication process to uniquely fingerprint a device instance or generate device-specific cryptographic key material. While silicon PUFs have been proposed which build on traditional memory structures, in particular SRAM, in this paper we present a memristor-based PUF which utilizes a weak-write mechanism to obtain cell behaviour which is influenced by process variation and hence usable as a PUF response. Using a model-based approach we evaluate memristor PUFs under random process variations and present results on the performance of this new PUF variant.\",\"PeriodicalId\":6310,\"journal\":{\"name\":\"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"115 1\",\"pages\":\"428-431\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"114\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7873/DATE.2013.096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2013.096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Memristor PUFs: A new generation of memory-based Physically Unclonable Functions
Memristors are emerging as a potential candidate for next-generation memory technologies, promising to deliver non-volatility at performance and density targets which were previously the domain of SRAM and DRAM. Silicon Physically Unclonable Functions (PUFs) have been introduced as a relatively new security primitive which exploit manufacturing variation resulting from the IC fabrication process to uniquely fingerprint a device instance or generate device-specific cryptographic key material. While silicon PUFs have been proposed which build on traditional memory structures, in particular SRAM, in this paper we present a memristor-based PUF which utilizes a weak-write mechanism to obtain cell behaviour which is influenced by process variation and hence usable as a PUF response. Using a model-based approach we evaluate memristor PUFs under random process variations and present results on the performance of this new PUF variant.