广义Wigner矩阵拉普拉斯算子的谱性质

Pub Date : 2020-11-16 DOI:10.1142/s2010326322500265
Anirban Chatterjee, R. S. Hazra
{"title":"广义Wigner矩阵拉普拉斯算子的谱性质","authors":"Anirban Chatterjee, R. S. Hazra","doi":"10.1142/s2010326322500265","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the spectrum of a Laplacian matrix, also known as Markov matrices where the entries of the matrix are independent but have a variance profile. Motivated by recent works on generalized Wigner matrices we assume that the variance profile gives rise to a sequence of graphons. Under the assumption that these graphons converge, we show that the limiting spectral distribution converges. We give an expression for the moments of the limiting measure in terms of graph homomorphisms. In some special cases, we identify the limit explicitly. We also study the spectral norm and derive the order of the maximum eigenvalue. We show that our results cover Laplacians of various random graphs including inhomogeneous Erdős–Rényi random graphs, sparse W-random graphs, stochastic block matrices and constrained random graphs.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Spectral properties for the Laplacian of a generalized Wigner matrix\",\"authors\":\"Anirban Chatterjee, R. S. Hazra\",\"doi\":\"10.1142/s2010326322500265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the spectrum of a Laplacian matrix, also known as Markov matrices where the entries of the matrix are independent but have a variance profile. Motivated by recent works on generalized Wigner matrices we assume that the variance profile gives rise to a sequence of graphons. Under the assumption that these graphons converge, we show that the limiting spectral distribution converges. We give an expression for the moments of the limiting measure in terms of graph homomorphisms. In some special cases, we identify the limit explicitly. We also study the spectral norm and derive the order of the maximum eigenvalue. We show that our results cover Laplacians of various random graphs including inhomogeneous Erdős–Rényi random graphs, sparse W-random graphs, stochastic block matrices and constrained random graphs.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010326322500265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326322500265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们考虑一个拉普拉斯矩阵的谱,也被称为马尔科夫矩阵,其中矩阵的条目是独立的,但有一个方差轮廓。受最近关于广义维格纳矩阵的研究启发,我们假设方差轮廓会产生一系列图元。在这些石墨子收敛的假设下,我们证明了极限谱分布是收敛的。给出了极限测度的矩在图同态中的表达式。在某些特殊情况下,我们明确地确定了极限。我们还研究了谱范数,并推导了最大特征值的阶数。我们证明了我们的结果涵盖了各种随机图的拉普拉斯算子,包括非齐次Erdős-Rényi随机图,稀疏w -随机图,随机块矩阵和约束随机图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Spectral properties for the Laplacian of a generalized Wigner matrix
In this paper, we consider the spectrum of a Laplacian matrix, also known as Markov matrices where the entries of the matrix are independent but have a variance profile. Motivated by recent works on generalized Wigner matrices we assume that the variance profile gives rise to a sequence of graphons. Under the assumption that these graphons converge, we show that the limiting spectral distribution converges. We give an expression for the moments of the limiting measure in terms of graph homomorphisms. In some special cases, we identify the limit explicitly. We also study the spectral norm and derive the order of the maximum eigenvalue. We show that our results cover Laplacians of various random graphs including inhomogeneous Erdős–Rényi random graphs, sparse W-random graphs, stochastic block matrices and constrained random graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信