生成对抗网络如何学习分布

Tengyuan Liang
{"title":"生成对抗网络如何学习分布","authors":"Tengyuan Liang","doi":"10.2139/ssrn.3714011","DOIUrl":null,"url":null,"abstract":"This paper studies the rates of convergence for learning distributions implicitly with the adversarial framework and Generative Adversarial Networks (GAN), which subsume Wasserstein, Sobolev, MMD GAN, and Generalized/Simulated Method of Moments (GMM/SMM) as special cases. We study a wide range of parametric and nonparametric target distributions, under a host of objective evaluation metrics. We investigate how to obtain a good statistical guarantee for GANs through the lens of regularization. On the nonparametric end, we derive the optimal minimax rates for distribution estimation under the adversarial framework. On the parametric end, we establish a theory for general neural network classes (including deep leaky ReLU networks), that characterizes the interplay on the choice of generator and discriminator pair. We discover and isolate a new notion of regularization, called the generator-discriminator-pair regularization, that sheds light on the advantage of GANs compared to classical parametric and nonparametric approaches for explicit distribution estimation. We develop novel oracle inequalities as the main technical tools for analyzing GANs, which is of independent interest.","PeriodicalId":14794,"journal":{"name":"J. Mach. Learn. Res.","volume":"103 1","pages":"228:1-228:41"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":"{\"title\":\"How Well Generative Adversarial Networks Learn Distributions\",\"authors\":\"Tengyuan Liang\",\"doi\":\"10.2139/ssrn.3714011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the rates of convergence for learning distributions implicitly with the adversarial framework and Generative Adversarial Networks (GAN), which subsume Wasserstein, Sobolev, MMD GAN, and Generalized/Simulated Method of Moments (GMM/SMM) as special cases. We study a wide range of parametric and nonparametric target distributions, under a host of objective evaluation metrics. We investigate how to obtain a good statistical guarantee for GANs through the lens of regularization. On the nonparametric end, we derive the optimal minimax rates for distribution estimation under the adversarial framework. On the parametric end, we establish a theory for general neural network classes (including deep leaky ReLU networks), that characterizes the interplay on the choice of generator and discriminator pair. We discover and isolate a new notion of regularization, called the generator-discriminator-pair regularization, that sheds light on the advantage of GANs compared to classical parametric and nonparametric approaches for explicit distribution estimation. We develop novel oracle inequalities as the main technical tools for analyzing GANs, which is of independent interest.\",\"PeriodicalId\":14794,\"journal\":{\"name\":\"J. Mach. Learn. Res.\",\"volume\":\"103 1\",\"pages\":\"228:1-228:41\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Mach. Learn. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3714011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Mach. Learn. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3714011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

摘要

本文以Wasserstein、Sobolev、MMD GAN和广义/模拟矩法(GMM/SMM)为特例,研究了基于对抗框架和生成对抗网络的隐式学习分布的收敛速度。我们研究了一系列客观评价指标下的参数和非参数目标分布。我们从正则化的角度研究了如何获得gan的良好统计保证。在非参数端,我们导出了对抗性框架下分布估计的最优极大极小率。在参数端,我们建立了一般神经网络类(包括深度泄漏ReLU网络)的理论,表征了生成器和鉴别器对选择的相互作用。我们发现并分离了一个新的正则化概念,称为生成器-鉴别器对正则化,它揭示了gan与显式分布估计的经典参数和非参数方法相比的优势。我们开发了新的oracle不等式作为分析gan的主要技术工具,这是一个独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How Well Generative Adversarial Networks Learn Distributions
This paper studies the rates of convergence for learning distributions implicitly with the adversarial framework and Generative Adversarial Networks (GAN), which subsume Wasserstein, Sobolev, MMD GAN, and Generalized/Simulated Method of Moments (GMM/SMM) as special cases. We study a wide range of parametric and nonparametric target distributions, under a host of objective evaluation metrics. We investigate how to obtain a good statistical guarantee for GANs through the lens of regularization. On the nonparametric end, we derive the optimal minimax rates for distribution estimation under the adversarial framework. On the parametric end, we establish a theory for general neural network classes (including deep leaky ReLU networks), that characterizes the interplay on the choice of generator and discriminator pair. We discover and isolate a new notion of regularization, called the generator-discriminator-pair regularization, that sheds light on the advantage of GANs compared to classical parametric and nonparametric approaches for explicit distribution estimation. We develop novel oracle inequalities as the main technical tools for analyzing GANs, which is of independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信