Omnia A. Nour, C. Pansch, M. Lenz, M. Wahl, C. Clemmesen, M. Stumpp
{"title":"低盐度条件下的幼虫发育不良可能会限制波罗的海外来蟹(Hemigrapsus takanoi)的传播","authors":"Omnia A. Nour, C. Pansch, M. Lenz, M. Wahl, C. Clemmesen, M. Stumpp","doi":"10.3354/AB00743","DOIUrl":null,"url":null,"abstract":"Publisher: Inter-Research · www.int-res.com *Corresponding author: olasm.nour@gmail.com ABSTRACT: The Asian shore crab Hemigrapsus takanoi, native to the northwest Pacific Ocean, was re cently discovered in Kiel Fjord (southwestern Bal tic Sea). In laboratory experiments, we tested the salinity tolerance of H. takanoi across 8 levels (0 to 35) and across 3 life history stages (larvae, juveniles and adults) to assess its potential to invade the brackish Baltic Sea. Larval development at different salinities was monitored from hatching to the megalopa stage, while survival and feeding of juveniles and adults were assessed over 17 d. Larvae of H. taka noi were able to complete their development to megalopa at salinities ≥ 20 and the time needed after hatch to reach this stage did not differ between salinities of 20, 25, 30 and 35. At a salinity of 15, larvae still reached the last zoea stage (zoea V), but development to the megalopa stage was not completed. All juveniles and adults survived at salinities from 5 to 35. Feeding rates of juveniles in creased with increasing salinity across the entire salinity range. However, feeding rates of adults reached their maximum be tween salinities of 15 and 35. Our results indicate that both juveniles and adults of H. takanoi are eu ry haline and can tolerate a wide range of salinities, at least for the time period tested (2 wk). However, larval development was impaired at salinities lower than 20, which may prevent the spread of H. takanoi into the Baltic Proper.","PeriodicalId":8111,"journal":{"name":"Aquatic Biology","volume":"18 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Impaired larval development at low salinities could limit the spread of the non-native crab Hemigrapsus takanoi in the Baltic Sea\",\"authors\":\"Omnia A. Nour, C. Pansch, M. Lenz, M. Wahl, C. Clemmesen, M. Stumpp\",\"doi\":\"10.3354/AB00743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Publisher: Inter-Research · www.int-res.com *Corresponding author: olasm.nour@gmail.com ABSTRACT: The Asian shore crab Hemigrapsus takanoi, native to the northwest Pacific Ocean, was re cently discovered in Kiel Fjord (southwestern Bal tic Sea). In laboratory experiments, we tested the salinity tolerance of H. takanoi across 8 levels (0 to 35) and across 3 life history stages (larvae, juveniles and adults) to assess its potential to invade the brackish Baltic Sea. Larval development at different salinities was monitored from hatching to the megalopa stage, while survival and feeding of juveniles and adults were assessed over 17 d. Larvae of H. taka noi were able to complete their development to megalopa at salinities ≥ 20 and the time needed after hatch to reach this stage did not differ between salinities of 20, 25, 30 and 35. At a salinity of 15, larvae still reached the last zoea stage (zoea V), but development to the megalopa stage was not completed. All juveniles and adults survived at salinities from 5 to 35. Feeding rates of juveniles in creased with increasing salinity across the entire salinity range. However, feeding rates of adults reached their maximum be tween salinities of 15 and 35. Our results indicate that both juveniles and adults of H. takanoi are eu ry haline and can tolerate a wide range of salinities, at least for the time period tested (2 wk). However, larval development was impaired at salinities lower than 20, which may prevent the spread of H. takanoi into the Baltic Proper.\",\"PeriodicalId\":8111,\"journal\":{\"name\":\"Aquatic Biology\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3354/AB00743\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3354/AB00743","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Impaired larval development at low salinities could limit the spread of the non-native crab Hemigrapsus takanoi in the Baltic Sea
Publisher: Inter-Research · www.int-res.com *Corresponding author: olasm.nour@gmail.com ABSTRACT: The Asian shore crab Hemigrapsus takanoi, native to the northwest Pacific Ocean, was re cently discovered in Kiel Fjord (southwestern Bal tic Sea). In laboratory experiments, we tested the salinity tolerance of H. takanoi across 8 levels (0 to 35) and across 3 life history stages (larvae, juveniles and adults) to assess its potential to invade the brackish Baltic Sea. Larval development at different salinities was monitored from hatching to the megalopa stage, while survival and feeding of juveniles and adults were assessed over 17 d. Larvae of H. taka noi were able to complete their development to megalopa at salinities ≥ 20 and the time needed after hatch to reach this stage did not differ between salinities of 20, 25, 30 and 35. At a salinity of 15, larvae still reached the last zoea stage (zoea V), but development to the megalopa stage was not completed. All juveniles and adults survived at salinities from 5 to 35. Feeding rates of juveniles in creased with increasing salinity across the entire salinity range. However, feeding rates of adults reached their maximum be tween salinities of 15 and 35. Our results indicate that both juveniles and adults of H. takanoi are eu ry haline and can tolerate a wide range of salinities, at least for the time period tested (2 wk). However, larval development was impaired at salinities lower than 20, which may prevent the spread of H. takanoi into the Baltic Proper.
期刊介绍:
AB publishes rigorously refereed and carefully selected Feature Articles, Research Articles, Reviews and Notes, as well as Comments/Reply Comments (for details see MEPS 228:1), Theme Sections, Opinion Pieces (previously called ''As I See It'') (for details consult the Guidelines for Authors) concerned with the biology, physiology, biochemistry and genetics (including the ’omics‘) of all aquatic organisms under laboratory and field conditions, and at all levels of organisation and investigation. Areas covered include:
-Biological aspects of biota: Evolution and speciation; life histories; biodiversity, biogeography and phylogeography; population genetics; biological connectedness between marine and freshwater biota; paleobiology of aquatic environments; invasive species.
-Biochemical and physiological aspects of aquatic life; synthesis and conversion of organic matter (mechanisms of auto- and heterotrophy, digestion, respiration, nutrition); thermo-, ion, osmo- and volume-regulation; stress and stress resistance; metabolism and energy budgets; non-genetic and genetic adaptation.
-Species interactions: Environment–organism and organism–organism interrelationships; predation: defenses (physical and chemical); symbioses.
-Molecular biology of aquatic life.
-Behavior: Orientation in space and time; migrations; feeding and reproductive behavior; agonistic behavior.
-Toxicology and water-quality effects on organisms; anthropogenic impacts on aquatic biota (e.g. pollution, fisheries); stream regulation and restoration.
-Theoretical biology: mathematical modelling of biological processes and species interactions.
-Methodology and equipment employed in aquatic biological research; underwater exploration and experimentation.
-Exploitation of aquatic biota: Fisheries; cultivation of aquatic organisms: use, management, protection and conservation of living aquatic resources.
-Reproduction and development in marine, brackish and freshwater organisms