低复杂度神经网络去噪物理层安全中的不完美CSI

I. Ajayi, Y. Medjahdi, L. Mroueh, Olumide Okubadejo, F. Kaddour
{"title":"低复杂度神经网络去噪物理层安全中的不完美CSI","authors":"I. Ajayi, Y. Medjahdi, L. Mroueh, Olumide Okubadejo, F. Kaddour","doi":"10.1109/EuCNC/6GSummit58263.2023.10188372","DOIUrl":null,"url":null,"abstract":"Channel adaptation physical layer security (PLS) schemes are degraded when the channel state information (CSI) is imperfect. Imperfect CSI is due to factors such as noisy feedback, outdated CSI, etc. In this paper, we propose a low-complexity noisy CSI denoising scheme based on the autoencoder architecture of deep neural networks referred to as DenoiseSec-Net. To further reduce complexity, we then propose a hybrid version (HybDenoiseSecNet) that combines a legacy denoising scheme and a shallow neural network to achieve a similar performance as DenoiseSecNet. Simulation results, in terms of bit error rate (BER), secrecy capacity, and normalized mean squared error (NMSE), show the performance improvement of our proposed scheme compared to conventional denoising schemes. Finally, we study the significant reduction in computational complexity of the proposed scheme compared to another neural network scheme.","PeriodicalId":65870,"journal":{"name":"公共管理高层论坛","volume":"182 1","pages":"48-53"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Complexity Neural Networks for Denoising Imperfect CSI in Physical Layer Security\",\"authors\":\"I. Ajayi, Y. Medjahdi, L. Mroueh, Olumide Okubadejo, F. Kaddour\",\"doi\":\"10.1109/EuCNC/6GSummit58263.2023.10188372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Channel adaptation physical layer security (PLS) schemes are degraded when the channel state information (CSI) is imperfect. Imperfect CSI is due to factors such as noisy feedback, outdated CSI, etc. In this paper, we propose a low-complexity noisy CSI denoising scheme based on the autoencoder architecture of deep neural networks referred to as DenoiseSec-Net. To further reduce complexity, we then propose a hybrid version (HybDenoiseSecNet) that combines a legacy denoising scheme and a shallow neural network to achieve a similar performance as DenoiseSecNet. Simulation results, in terms of bit error rate (BER), secrecy capacity, and normalized mean squared error (NMSE), show the performance improvement of our proposed scheme compared to conventional denoising schemes. Finally, we study the significant reduction in computational complexity of the proposed scheme compared to another neural network scheme.\",\"PeriodicalId\":65870,\"journal\":{\"name\":\"公共管理高层论坛\",\"volume\":\"182 1\",\"pages\":\"48-53\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"公共管理高层论坛\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"公共管理高层论坛","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当信道状态信息不完善时,信道自适应物理层安全性(PLS)会降低。不完善的CSI是由于噪声反馈、过时的CSI等因素造成的。在本文中,我们提出了一种基于深度神经网络自编码器结构的低复杂度噪声CSI去噪方案,称为noisesec - net。为了进一步降低复杂性,我们提出了一个混合版本(HybDenoiseSecNet),它结合了传统的去噪方案和浅层神经网络,以实现与DenoiseSecNet相似的性能。在误码率(BER)、保密能力和归一化均方误差(NMSE)方面的仿真结果表明,与传统的去噪方案相比,我们提出的方案的性能有所提高。最后,我们研究了与另一种神经网络方案相比,该方案的计算复杂度显著降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-Complexity Neural Networks for Denoising Imperfect CSI in Physical Layer Security
Channel adaptation physical layer security (PLS) schemes are degraded when the channel state information (CSI) is imperfect. Imperfect CSI is due to factors such as noisy feedback, outdated CSI, etc. In this paper, we propose a low-complexity noisy CSI denoising scheme based on the autoencoder architecture of deep neural networks referred to as DenoiseSec-Net. To further reduce complexity, we then propose a hybrid version (HybDenoiseSecNet) that combines a legacy denoising scheme and a shallow neural network to achieve a similar performance as DenoiseSecNet. Simulation results, in terms of bit error rate (BER), secrecy capacity, and normalized mean squared error (NMSE), show the performance improvement of our proposed scheme compared to conventional denoising schemes. Finally, we study the significant reduction in computational complexity of the proposed scheme compared to another neural network scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
385
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信