关于平面图形dp着色不当的一个注记

IF 0.9 Q3 COMPUTER SCIENCE, THEORY & METHODS
Hongyan Cai, Qiang Sun
{"title":"关于平面图形dp着色不当的一个注记","authors":"Hongyan Cai, Qiang Sun","doi":"10.1080/23799927.2021.1872707","DOIUrl":null,"url":null,"abstract":"ABSTRACT DP-colouring (also known as correspondence colouring), introduced by Dvořák and Postle, is a generalization of list colouring. Many results on list-colouring of graphs, especially of planar graphs, have been extended to the setting of DP-colouring. Recently, Pongpat and Kittikorn [P. Sittitrai and K. Nakprasit, Suffficient conditions on planar graphs to have a relaxed DP-3-colourability, Graphs and Combinatorics 35 (2019), pp. 837–845.] introduced DP- -colouring to generalize -colouring and -choosability. They proved that every planar graph G without -cycles is DP- -colourable. In this note, we show the following results:(1) Every planar graph G without -cycles is DP- -colourable; (2) Every planar graph G without -cycles is DP- -colourable; (3) Every planar graph G without -cycles is DP- -colourable.","PeriodicalId":37216,"journal":{"name":"International Journal of Computer Mathematics: Computer Systems Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on improper DP-colouring of planar graphs\",\"authors\":\"Hongyan Cai, Qiang Sun\",\"doi\":\"10.1080/23799927.2021.1872707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT DP-colouring (also known as correspondence colouring), introduced by Dvořák and Postle, is a generalization of list colouring. Many results on list-colouring of graphs, especially of planar graphs, have been extended to the setting of DP-colouring. Recently, Pongpat and Kittikorn [P. Sittitrai and K. Nakprasit, Suffficient conditions on planar graphs to have a relaxed DP-3-colourability, Graphs and Combinatorics 35 (2019), pp. 837–845.] introduced DP- -colouring to generalize -colouring and -choosability. They proved that every planar graph G without -cycles is DP- -colourable. In this note, we show the following results:(1) Every planar graph G without -cycles is DP- -colourable; (2) Every planar graph G without -cycles is DP- -colourable; (3) Every planar graph G without -cycles is DP- -colourable.\",\"PeriodicalId\":37216,\"journal\":{\"name\":\"International Journal of Computer Mathematics: Computer Systems Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Mathematics: Computer Systems Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23799927.2021.1872707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Mathematics: Computer Systems Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23799927.2021.1872707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

dp -着色(也称为对应着色)是由Dvořák和Postle提出的对列表着色的一种推广。许多关于图,特别是平面图的列表着色的结果,已经推广到dp着色的设置。最近,Pongpat和Kittikorn [P。Sittitrai和K. Nakprasit,平面图具有松弛dp -3可色性的充分条件,图与组合35 (2019),pp. 837-845。介绍了DP-着色,以推广-着色和-选择性。他们证明了每一个无环的平面图G都是DP可着色的。在这篇笔记中,我们证明了以下结果:(1)每一个没有-环的平面图G都是DP-可着色的;(2)所有不带-环的平面图G都是DP-可着色的;(3)无-环的平面图G均可DP-着色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on improper DP-colouring of planar graphs
ABSTRACT DP-colouring (also known as correspondence colouring), introduced by Dvořák and Postle, is a generalization of list colouring. Many results on list-colouring of graphs, especially of planar graphs, have been extended to the setting of DP-colouring. Recently, Pongpat and Kittikorn [P. Sittitrai and K. Nakprasit, Suffficient conditions on planar graphs to have a relaxed DP-3-colourability, Graphs and Combinatorics 35 (2019), pp. 837–845.] introduced DP- -colouring to generalize -colouring and -choosability. They proved that every planar graph G without -cycles is DP- -colourable. In this note, we show the following results:(1) Every planar graph G without -cycles is DP- -colourable; (2) Every planar graph G without -cycles is DP- -colourable; (3) Every planar graph G without -cycles is DP- -colourable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Mathematics: Computer Systems Theory
International Journal of Computer Mathematics: Computer Systems Theory Computer Science-Computational Theory and Mathematics
CiteScore
1.80
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信