哨兵2号数据的探索性搜索方法:视觉和潜在特征的展望。

C. Vaduva, F. Georgescu, Andreea Griparis, Iulia Coca Neagoe, Alexandru-Cosmin Grivei, M. Datcu
{"title":"哨兵2号数据的探索性搜索方法:视觉和潜在特征的展望。","authors":"C. Vaduva, F. Georgescu, Andreea Griparis, Iulia Coca Neagoe, Alexandru-Cosmin Grivei, M. Datcu","doi":"10.1109/IGARSS.2019.8900349","DOIUrl":null,"url":null,"abstract":"Sentinel 2 (S2) satellite provides a systematic global coverage of land surfaces, measuring physical properties within 13 spectral intervals at a temporal resolution of 5 days. Computer-based data analysis is highly required to extract similarity by processing and assist human understanding and semantic annotation in support of Earth surface mapping. This paper proposes an exploratory search methodology for S2 data underpinning both visual and latent characteristics by means of data visualization and content representation. For optimized results, the authors focus on a detailed assessment of top relevant state-of-the-art algorithms for features extraction and classification to determine which one could handle best the characteristics of S2 data.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"234 1","pages":"10067-10070"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Exploratory search methodology for sentinel 2 data: a prospect of both visual and latent characteristics.\",\"authors\":\"C. Vaduva, F. Georgescu, Andreea Griparis, Iulia Coca Neagoe, Alexandru-Cosmin Grivei, M. Datcu\",\"doi\":\"10.1109/IGARSS.2019.8900349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sentinel 2 (S2) satellite provides a systematic global coverage of land surfaces, measuring physical properties within 13 spectral intervals at a temporal resolution of 5 days. Computer-based data analysis is highly required to extract similarity by processing and assist human understanding and semantic annotation in support of Earth surface mapping. This paper proposes an exploratory search methodology for S2 data underpinning both visual and latent characteristics by means of data visualization and content representation. For optimized results, the authors focus on a detailed assessment of top relevant state-of-the-art algorithms for features extraction and classification to determine which one could handle best the characteristics of S2 data.\",\"PeriodicalId\":13262,\"journal\":{\"name\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"234 1\",\"pages\":\"10067-10070\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2019.8900349\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8900349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

哨兵2号(S2)卫星提供系统的全球陆地表面覆盖,以5天的时间分辨率在13个光谱间隔内测量物理特性。基于计算机的数据分析需要通过处理提取相似度,并协助人类理解和语义注释,以支持地球表面制图。本文提出了一种基于数据可视化和内容表示的S2数据可视化和潜在特征的探索性搜索方法。为了优化结果,作者着重于对特征提取和分类的顶级相关最先进算法进行了详细评估,以确定哪一种算法可以最好地处理S2数据的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploratory search methodology for sentinel 2 data: a prospect of both visual and latent characteristics.
Sentinel 2 (S2) satellite provides a systematic global coverage of land surfaces, measuring physical properties within 13 spectral intervals at a temporal resolution of 5 days. Computer-based data analysis is highly required to extract similarity by processing and assist human understanding and semantic annotation in support of Earth surface mapping. This paper proposes an exploratory search methodology for S2 data underpinning both visual and latent characteristics by means of data visualization and content representation. For optimized results, the authors focus on a detailed assessment of top relevant state-of-the-art algorithms for features extraction and classification to determine which one could handle best the characteristics of S2 data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信