S. Srinivasa, Yung-Ning Tu, Xin Si, Cheng-Xin Xue, Chun-Ying Lee, F. Hsueh, Chane-Hone Shen, J. Shieh, W. Yeh, A. Ramanathan, M. Ho, J. Sampson, Meng-Fan Chang, V. Narayanan
{"title":"基于单片3D+ ic的可重构内存计算SRAM宏","authors":"S. Srinivasa, Yung-Ning Tu, Xin Si, Cheng-Xin Xue, Chun-Ying Lee, F. Hsueh, Chane-Hone Shen, J. Shieh, W. Yeh, A. Ramanathan, M. Ho, J. Sampson, Meng-Fan Chang, V. Narayanan","doi":"10.23919/VLSIT.2019.8776506","DOIUrl":null,"url":null,"abstract":"This paper presents the first monolithic 3D two-layer reconfigurable SRAM macro capable of executing multiple Compute-in-Memory (CiM) tasks as part of data readout. Fabricated using low cost FinFET based 3D+-IC, the SRAM offers concurrent data read from both layers and write from layer 2 with 0.4V $\\text{V}_{\\text{dd}\\min}$ 12.8x improved computation latency is achieved as compared to near memory computation of successive Boolean operations.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"103 1","pages":"T32-T33"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Monolithic 3D+ -IC based Reconfigurable Compute-in-Memory SRAM Macro\",\"authors\":\"S. Srinivasa, Yung-Ning Tu, Xin Si, Cheng-Xin Xue, Chun-Ying Lee, F. Hsueh, Chane-Hone Shen, J. Shieh, W. Yeh, A. Ramanathan, M. Ho, J. Sampson, Meng-Fan Chang, V. Narayanan\",\"doi\":\"10.23919/VLSIT.2019.8776506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the first monolithic 3D two-layer reconfigurable SRAM macro capable of executing multiple Compute-in-Memory (CiM) tasks as part of data readout. Fabricated using low cost FinFET based 3D+-IC, the SRAM offers concurrent data read from both layers and write from layer 2 with 0.4V $\\\\text{V}_{\\\\text{dd}\\\\min}$ 12.8x improved computation latency is achieved as compared to near memory computation of successive Boolean operations.\",\"PeriodicalId\":6752,\"journal\":{\"name\":\"2019 Symposium on VLSI Technology\",\"volume\":\"103 1\",\"pages\":\"T32-T33\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Symposium on VLSI Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/VLSIT.2019.8776506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIT.2019.8776506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Monolithic 3D+ -IC based Reconfigurable Compute-in-Memory SRAM Macro
This paper presents the first monolithic 3D two-layer reconfigurable SRAM macro capable of executing multiple Compute-in-Memory (CiM) tasks as part of data readout. Fabricated using low cost FinFET based 3D+-IC, the SRAM offers concurrent data read from both layers and write from layer 2 with 0.4V $\text{V}_{\text{dd}\min}$ 12.8x improved computation latency is achieved as compared to near memory computation of successive Boolean operations.