由阿贝尔群束对群拟的扩展的推入

Q4 Mathematics
Marius Ionescu, A. Kumjian, J. Renault, A. Sims, Dana P. Williams
{"title":"由阿贝尔群束对群拟的扩展的推入","authors":"Marius Ionescu, A. Kumjian, J. Renault, A. Sims, Dana P. Williams","doi":"10.53733/136","DOIUrl":null,"url":null,"abstract":"We analyse extensions $\\Sigma$ of groupoids G by bundles A of abelian groups. We describe a pushout construction for such extensions, and use it to describe the extension group of a given groupoid G by a given bundle A. There is a natural action of Sigma on the dual of A, yielding a corresponding transformation groupoid. The pushout of this transformation groupoid by the natural map from the fibre product of A with its dual to the Cartesian product of the dual with the circle is a twist over the transformation groupoid resulting from the action of G on the dual of A. We prove that the full C*-algebra of this twist is isomorphic to the full C*-algebra of $\\Sigma$, and that this isomorphism descends to an isomorphism of reduced algebras. We give a number of examples and applications.","PeriodicalId":30137,"journal":{"name":"New Zealand Journal of Mathematics","volume":"97 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Pushouts of extensions of groupoids by bundles of abelian groups\",\"authors\":\"Marius Ionescu, A. Kumjian, J. Renault, A. Sims, Dana P. Williams\",\"doi\":\"10.53733/136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyse extensions $\\\\Sigma$ of groupoids G by bundles A of abelian groups. We describe a pushout construction for such extensions, and use it to describe the extension group of a given groupoid G by a given bundle A. There is a natural action of Sigma on the dual of A, yielding a corresponding transformation groupoid. The pushout of this transformation groupoid by the natural map from the fibre product of A with its dual to the Cartesian product of the dual with the circle is a twist over the transformation groupoid resulting from the action of G on the dual of A. We prove that the full C*-algebra of this twist is isomorphic to the full C*-algebra of $\\\\Sigma$, and that this isomorphism descends to an isomorphism of reduced algebras. We give a number of examples and applications.\",\"PeriodicalId\":30137,\"journal\":{\"name\":\"New Zealand Journal of Mathematics\",\"volume\":\"97 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Zealand Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53733/136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Zealand Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53733/136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

我们用阿贝尔群的束A分析群类群G的扩展$\Sigma$。我们描述了这类扩展的推出构造,并用它来描述给定群类群G被给定束a所扩展的群。在a的对偶上Sigma有一个自然作用,得到一个相应的变换群类群。由A及其对偶的纤维积到A的对偶与圆的笛卡尔积的自然映射推出的这个变换群是由G作用于A的对偶而产生的变换群上的一个扭转。我们证明了这个扭转的满C*-代数与$\Sigma$的满C*-代数同构,并且这个同构下降到约化代数的同构。我们给出了一些例子和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pushouts of extensions of groupoids by bundles of abelian groups
We analyse extensions $\Sigma$ of groupoids G by bundles A of abelian groups. We describe a pushout construction for such extensions, and use it to describe the extension group of a given groupoid G by a given bundle A. There is a natural action of Sigma on the dual of A, yielding a corresponding transformation groupoid. The pushout of this transformation groupoid by the natural map from the fibre product of A with its dual to the Cartesian product of the dual with the circle is a twist over the transformation groupoid resulting from the action of G on the dual of A. We prove that the full C*-algebra of this twist is isomorphic to the full C*-algebra of $\Sigma$, and that this isomorphism descends to an isomorphism of reduced algebras. We give a number of examples and applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Zealand Journal of Mathematics
New Zealand Journal of Mathematics Mathematics-Algebra and Number Theory
CiteScore
1.10
自引率
0.00%
发文量
11
审稿时长
50 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信