{"title":"用人工神经网络方法预测股票购买决策","authors":"U. Pujianto, D. Setyadi, M. I. Akbar","doi":"10.31763/aet.v2i1.686","DOIUrl":null,"url":null,"abstract":"The difficulty of determining a stock purchase decision is a problem to benefit from stock transactions. This study aims to give a person's decision to buy one of the issuer's company shares to get a profit on the same day. The dataset used in this study came from the investing.com website in the form of daily data shares of PT Indofood CBP Sukses Makmur Tbk with ICBP stock code for the period January - September 2019. The attributes used in this study were the opening price, highest price, lowest price, closing price, transaction volume, day representation, and decisions. The dataset that has been collected was normalized using the Min-Max method to facilitate data processing. This research used the backpropagation neural network method and used the 10-Fold Cross Validation and Confusion Matrix for validation. The results of this study indicate that the backpropagation neural network method uses the bipolar activation function with training cycles of 2000 and learning rate of 0.03 has the best performance namely 69.35% of accuracy, 67.65% of precision, 74.19% of recall and 30.65% of error rate for prediction of stock purchase decisions per day in the form of buy or not.","PeriodicalId":21010,"journal":{"name":"Research Journal of Applied Sciences, Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of stock purchase decisions using artificial neural network method\",\"authors\":\"U. Pujianto, D. Setyadi, M. I. Akbar\",\"doi\":\"10.31763/aet.v2i1.686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The difficulty of determining a stock purchase decision is a problem to benefit from stock transactions. This study aims to give a person's decision to buy one of the issuer's company shares to get a profit on the same day. The dataset used in this study came from the investing.com website in the form of daily data shares of PT Indofood CBP Sukses Makmur Tbk with ICBP stock code for the period January - September 2019. The attributes used in this study were the opening price, highest price, lowest price, closing price, transaction volume, day representation, and decisions. The dataset that has been collected was normalized using the Min-Max method to facilitate data processing. This research used the backpropagation neural network method and used the 10-Fold Cross Validation and Confusion Matrix for validation. The results of this study indicate that the backpropagation neural network method uses the bipolar activation function with training cycles of 2000 and learning rate of 0.03 has the best performance namely 69.35% of accuracy, 67.65% of precision, 74.19% of recall and 30.65% of error rate for prediction of stock purchase decisions per day in the form of buy or not.\",\"PeriodicalId\":21010,\"journal\":{\"name\":\"Research Journal of Applied Sciences, Engineering and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Journal of Applied Sciences, Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31763/aet.v2i1.686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Journal of Applied Sciences, Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31763/aet.v2i1.686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
股票购买决策的难决性是股票交易中能否受益的问题。本研究的目的是在同一天给出一个人购买发行人公司股票以获得利润的决定。本研究使用的数据集来自investing.com网站,以2019年1月至9月期间PT Indofood CBP Sukses Makmur Tbk的每日数据份额形式,股票代码为ICBP。在本研究中使用的属性是开盘价,最高价,最低价,收盘价,交易量,日代表和决策。将收集到的数据集使用Min-Max方法进行归一化,以方便数据处理。本研究采用反向传播神经网络方法,并采用10倍交叉验证和混淆矩阵进行验证。本研究结果表明,采用双极激活函数的反向传播神经网络方法,训练周期为2000,学习率为0.03,对每日股票购买决策的预测准确率为69.35%,准确率为67.65%,召回率为74.19%,错误率为30.65%。
Prediction of stock purchase decisions using artificial neural network method
The difficulty of determining a stock purchase decision is a problem to benefit from stock transactions. This study aims to give a person's decision to buy one of the issuer's company shares to get a profit on the same day. The dataset used in this study came from the investing.com website in the form of daily data shares of PT Indofood CBP Sukses Makmur Tbk with ICBP stock code for the period January - September 2019. The attributes used in this study were the opening price, highest price, lowest price, closing price, transaction volume, day representation, and decisions. The dataset that has been collected was normalized using the Min-Max method to facilitate data processing. This research used the backpropagation neural network method and used the 10-Fold Cross Validation and Confusion Matrix for validation. The results of this study indicate that the backpropagation neural network method uses the bipolar activation function with training cycles of 2000 and learning rate of 0.03 has the best performance namely 69.35% of accuracy, 67.65% of precision, 74.19% of recall and 30.65% of error rate for prediction of stock purchase decisions per day in the form of buy or not.