X.G. Peralta , I. Brener , W.J. Padilla , E.W. Young , A.J. Hoffman , M.J. Cich , R.D. Averitt , M.C. Wanke , J.B. Wright , H.-T. Chen , J.F. O’Hara , A.J. Taylor , J. Waldman , W.D. Goodhue , J. Li , J. Reno
{"title":"基于电驱动有源超材料的太赫兹量子级联激光器外部调制器","authors":"X.G. Peralta , I. Brener , W.J. Padilla , E.W. Young , A.J. Hoffman , M.J. Cich , R.D. Averitt , M.C. Wanke , J.B. Wright , H.-T. Chen , J.F. O’Hara , A.J. Taylor , J. Waldman , W.D. Goodhue , J. Li , J. Reno","doi":"10.1016/j.metmat.2010.04.005","DOIUrl":null,"url":null,"abstract":"<div><p><span>We have designed, fabricated and measured electrically-driven active metamaterials<span> which operate as external modulators for TeraHertz Quantum Cascade Lasers. The modulation is achieved by applying a voltage to the metamaterial layer which actively displaces carriers from the n-doped layer causing changes in damping and frequency location of the lowest metamaterial response. We demonstrate their operation at 2.4 and 2.8</span></span> <!-->TeraHertz and obtain a maximum modulation depth of ∼60% with a large degree of modulation linearity.</p></div>","PeriodicalId":100920,"journal":{"name":"Metamaterials","volume":"4 2","pages":"Pages 83-88"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.metmat.2010.04.005","citationCount":"17","resultStr":"{\"title\":\"External modulators for TeraHertz Quantum Cascade Lasers based on electrically-driven active metamaterials\",\"authors\":\"X.G. Peralta , I. Brener , W.J. Padilla , E.W. Young , A.J. Hoffman , M.J. Cich , R.D. Averitt , M.C. Wanke , J.B. Wright , H.-T. Chen , J.F. O’Hara , A.J. Taylor , J. Waldman , W.D. Goodhue , J. Li , J. Reno\",\"doi\":\"10.1016/j.metmat.2010.04.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We have designed, fabricated and measured electrically-driven active metamaterials<span> which operate as external modulators for TeraHertz Quantum Cascade Lasers. The modulation is achieved by applying a voltage to the metamaterial layer which actively displaces carriers from the n-doped layer causing changes in damping and frequency location of the lowest metamaterial response. We demonstrate their operation at 2.4 and 2.8</span></span> <!-->TeraHertz and obtain a maximum modulation depth of ∼60% with a large degree of modulation linearity.</p></div>\",\"PeriodicalId\":100920,\"journal\":{\"name\":\"Metamaterials\",\"volume\":\"4 2\",\"pages\":\"Pages 83-88\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.metmat.2010.04.005\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metamaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1873198810000162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metamaterials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1873198810000162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
External modulators for TeraHertz Quantum Cascade Lasers based on electrically-driven active metamaterials
We have designed, fabricated and measured electrically-driven active metamaterials which operate as external modulators for TeraHertz Quantum Cascade Lasers. The modulation is achieved by applying a voltage to the metamaterial layer which actively displaces carriers from the n-doped layer causing changes in damping and frequency location of the lowest metamaterial response. We demonstrate their operation at 2.4 and 2.8 TeraHertz and obtain a maximum modulation depth of ∼60% with a large degree of modulation linearity.