{"title":"SBA-15去除超细颗粒的机理研究","authors":"邢奕, 崔永康, 苏伟, 尹丽鲲, 刘应书, 李子宜, 路培","doi":"10.13374/J.ISSN2095-9389.2019.04.01.004","DOIUrl":null,"url":null,"abstract":"In 2017, China’s industrial dust emissions accounted for 7.96 million tons, of which the iron and steel industry contributed approximately 25%. Particulate matter discharged from the iron and steel industry is mostly of a small size, high in temperature, and complex in composition. The mass concentration of ultrafine particles(UFPs) with particle sizes that are less than0.1 μm is low;however, the proportion of quantity concentration can be as high as 90%. Currently, the commonly used bag filters and electrostatic precipitators are not sufficiently efficient at collecting fine particles. Additionally, owing to the larger specific surface area of fine dust particles, they easily become carriers of adsorbing harmful gases, which has a greater impact on the environment and human health;thus, it is imperative to determine a simple and efficient filtration method to remove ultrafine particles. In this paper, the removal efficiency and mechanism of UFPs(2.5–25 nm) were investigated by using a scanning electromobility particle size spectrometer(SMPS)test system for SBA-15 for different pore sizes. This was done to provide a theoretical basis for the application of mesoporous materials in the control of ultra-low emission of particulate matter in the iron and steel industry. Based on the experimental results and characterization analysis, it is found that a mesoporous filtration medium with a large pore size is more efficient at affecting UFPs entry.There are many affinity sites for UFPs on the inner and outer surfaces of mesoporous materials with a specific pore size. Increasing the complexity of the ends is beneficial for improve the filtration performance of the materials. The presence or absence of nitrogen has little effect on the removal of UFPs. The diffusion effect of UFPs is stronger owing to the existence of mesoporous particles, and the diffusion coefficient is increased when particles enter the pore. Therefore, there is a difference between the theoretical exponent(m=-2/3) in the traditional model for particle diffusion and the actual diffusion results of UFPs in mesoporous materials.","PeriodicalId":31263,"journal":{"name":"工程设计学报","volume":"29 1","pages":"313-320"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the mechanism of removing ultrafine particles using SBA-15\",\"authors\":\"邢奕, 崔永康, 苏伟, 尹丽鲲, 刘应书, 李子宜, 路培\",\"doi\":\"10.13374/J.ISSN2095-9389.2019.04.01.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2017, China’s industrial dust emissions accounted for 7.96 million tons, of which the iron and steel industry contributed approximately 25%. Particulate matter discharged from the iron and steel industry is mostly of a small size, high in temperature, and complex in composition. The mass concentration of ultrafine particles(UFPs) with particle sizes that are less than0.1 μm is low;however, the proportion of quantity concentration can be as high as 90%. Currently, the commonly used bag filters and electrostatic precipitators are not sufficiently efficient at collecting fine particles. Additionally, owing to the larger specific surface area of fine dust particles, they easily become carriers of adsorbing harmful gases, which has a greater impact on the environment and human health;thus, it is imperative to determine a simple and efficient filtration method to remove ultrafine particles. In this paper, the removal efficiency and mechanism of UFPs(2.5–25 nm) were investigated by using a scanning electromobility particle size spectrometer(SMPS)test system for SBA-15 for different pore sizes. This was done to provide a theoretical basis for the application of mesoporous materials in the control of ultra-low emission of particulate matter in the iron and steel industry. Based on the experimental results and characterization analysis, it is found that a mesoporous filtration medium with a large pore size is more efficient at affecting UFPs entry.There are many affinity sites for UFPs on the inner and outer surfaces of mesoporous materials with a specific pore size. Increasing the complexity of the ends is beneficial for improve the filtration performance of the materials. The presence or absence of nitrogen has little effect on the removal of UFPs. The diffusion effect of UFPs is stronger owing to the existence of mesoporous particles, and the diffusion coefficient is increased when particles enter the pore. Therefore, there is a difference between the theoretical exponent(m=-2/3) in the traditional model for particle diffusion and the actual diffusion results of UFPs in mesoporous materials.\",\"PeriodicalId\":31263,\"journal\":{\"name\":\"工程设计学报\",\"volume\":\"29 1\",\"pages\":\"313-320\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"工程设计学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.13374/J.ISSN2095-9389.2019.04.01.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"工程设计学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13374/J.ISSN2095-9389.2019.04.01.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Study of the mechanism of removing ultrafine particles using SBA-15
In 2017, China’s industrial dust emissions accounted for 7.96 million tons, of which the iron and steel industry contributed approximately 25%. Particulate matter discharged from the iron and steel industry is mostly of a small size, high in temperature, and complex in composition. The mass concentration of ultrafine particles(UFPs) with particle sizes that are less than0.1 μm is low;however, the proportion of quantity concentration can be as high as 90%. Currently, the commonly used bag filters and electrostatic precipitators are not sufficiently efficient at collecting fine particles. Additionally, owing to the larger specific surface area of fine dust particles, they easily become carriers of adsorbing harmful gases, which has a greater impact on the environment and human health;thus, it is imperative to determine a simple and efficient filtration method to remove ultrafine particles. In this paper, the removal efficiency and mechanism of UFPs(2.5–25 nm) were investigated by using a scanning electromobility particle size spectrometer(SMPS)test system for SBA-15 for different pore sizes. This was done to provide a theoretical basis for the application of mesoporous materials in the control of ultra-low emission of particulate matter in the iron and steel industry. Based on the experimental results and characterization analysis, it is found that a mesoporous filtration medium with a large pore size is more efficient at affecting UFPs entry.There are many affinity sites for UFPs on the inner and outer surfaces of mesoporous materials with a specific pore size. Increasing the complexity of the ends is beneficial for improve the filtration performance of the materials. The presence or absence of nitrogen has little effect on the removal of UFPs. The diffusion effect of UFPs is stronger owing to the existence of mesoporous particles, and the diffusion coefficient is increased when particles enter the pore. Therefore, there is a difference between the theoretical exponent(m=-2/3) in the traditional model for particle diffusion and the actual diffusion results of UFPs in mesoporous materials.
期刊介绍:
Chinese Journal of Engineering Design is a reputable journal published by Zhejiang University Press Co., Ltd. It was founded in December, 1994 as the first internationally cooperative journal in the area of engineering design research. Administrated by the Ministry of Education of China, it is sponsored by both Zhejiang University and Chinese Society of Mechanical Engineering. Zhejiang University Press Co., Ltd. is fully responsible for its bimonthly domestic and oversea publication. Its page is in A4 size. This journal is devoted to reporting most up-to-date achievements of engineering design researches and therefore, to promote the communications of academic researches and their applications to industry. Achievments of great creativity and practicablity are extraordinarily desirable. Aiming at supplying designers, developers and researchers of diversified technical artifacts with valuable references, its content covers all aspects of design theory and methodology, as well as its enabling environment, for instance, creative design, concurrent design, conceptual design, intelligent design, web-based design, reverse engineering design, industrial design, design optimization, tribology, design by biological analogy, virtual reality in design, structural analysis and design, design knowledge representation, design knowledge management, design decision-making systems, etc.