基于ARMA模型的GIS自由粒子缺陷发展趋势短期预测研究

Meng Cao, Chi Zhang, Q. Tang, Jin He, Xuliang Zhu, Qi Zhao
{"title":"基于ARMA模型的GIS自由粒子缺陷发展趋势短期预测研究","authors":"Meng Cao, Chi Zhang, Q. Tang, Jin He, Xuliang Zhu, Qi Zhao","doi":"10.1109/AEERO52475.2021.9708119","DOIUrl":null,"url":null,"abstract":"The prediction of the development trend of metal free particle defects is crucial to the maintenance and operation of GIS equipment, and an accurate prediction can effectively reduce the probability of GIS equipment failure. This paper proposes a short-term prediction method for the development trend of metal own particle defects based on ARMA model. Compared with the experimental data, it is found that this method can accurately achieve the prediction of the development trend of the partial discharge characteristic parameter of step mutability, and it is more difficult to predict the partial discharge characteristic parameter of nonlinear change, but the general trend of change can be basically predicted.","PeriodicalId":6828,"journal":{"name":"2021 International Conference on Advanced Electrical Equipment and Reliable Operation (AEERO)","volume":"30 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-term prediction study on the development trend of free particle defects within GIS based on ARMA model\",\"authors\":\"Meng Cao, Chi Zhang, Q. Tang, Jin He, Xuliang Zhu, Qi Zhao\",\"doi\":\"10.1109/AEERO52475.2021.9708119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prediction of the development trend of metal free particle defects is crucial to the maintenance and operation of GIS equipment, and an accurate prediction can effectively reduce the probability of GIS equipment failure. This paper proposes a short-term prediction method for the development trend of metal own particle defects based on ARMA model. Compared with the experimental data, it is found that this method can accurately achieve the prediction of the development trend of the partial discharge characteristic parameter of step mutability, and it is more difficult to predict the partial discharge characteristic parameter of nonlinear change, but the general trend of change can be basically predicted.\",\"PeriodicalId\":6828,\"journal\":{\"name\":\"2021 International Conference on Advanced Electrical Equipment and Reliable Operation (AEERO)\",\"volume\":\"30 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Advanced Electrical Equipment and Reliable Operation (AEERO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AEERO52475.2021.9708119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Advanced Electrical Equipment and Reliable Operation (AEERO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AEERO52475.2021.9708119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

金属游离颗粒缺陷的发展趋势预测对GIS设备的维护和运行至关重要,准确的预测可以有效降低GIS设备故障的概率。提出了一种基于ARMA模型的金属自身颗粒缺陷发展趋势的短期预测方法。与实验数据对比发现,该方法能够准确地实现对阶跃变异性局部放电特征参数发展趋势的预测,而对非线性变化的局部放电特征参数预测较为困难,但可以基本预测变化的总趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short-term prediction study on the development trend of free particle defects within GIS based on ARMA model
The prediction of the development trend of metal free particle defects is crucial to the maintenance and operation of GIS equipment, and an accurate prediction can effectively reduce the probability of GIS equipment failure. This paper proposes a short-term prediction method for the development trend of metal own particle defects based on ARMA model. Compared with the experimental data, it is found that this method can accurately achieve the prediction of the development trend of the partial discharge characteristic parameter of step mutability, and it is more difficult to predict the partial discharge characteristic parameter of nonlinear change, but the general trend of change can be basically predicted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信