从字节码学习API用法:一种统计方法

Tam The Nguyen, H. Pham, P. Vu, T. Nguyen
{"title":"从字节码学习API用法:一种统计方法","authors":"Tam The Nguyen, H. Pham, P. Vu, T. Nguyen","doi":"10.1145/2884781.2884873","DOIUrl":null,"url":null,"abstract":"Mobile app developers rely heavily on standard API frameworks and libraries. However, learning API usages is often challenging due to the fast-changing nature of API frameworks for mobile systems and the insufficiency of API documentation and source code examples. In this paper, we propose a novel approach to learn API usages from bytecode of Android mobile apps. Our core contributions include HAPI, a statistical model of API usages and three algorithms to extract method call sequences from apps’ bytecode, to train HAPI based on those sequences, and to recommend method calls in code completion using the trained HAPIs. Our empirical evaluation shows that our prototype tool can effectively learn API usages from 200 thousand apps containing 350 million method sequences. It recommends next method calls with top-3 accuracy of 90% and outperforms baseline approaches on average 10-20%.","PeriodicalId":6485,"journal":{"name":"2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE)","volume":"322 1","pages":"416-427"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":"{\"title\":\"Learning API Usages from Bytecode: A Statistical Approach\",\"authors\":\"Tam The Nguyen, H. Pham, P. Vu, T. Nguyen\",\"doi\":\"10.1145/2884781.2884873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile app developers rely heavily on standard API frameworks and libraries. However, learning API usages is often challenging due to the fast-changing nature of API frameworks for mobile systems and the insufficiency of API documentation and source code examples. In this paper, we propose a novel approach to learn API usages from bytecode of Android mobile apps. Our core contributions include HAPI, a statistical model of API usages and three algorithms to extract method call sequences from apps’ bytecode, to train HAPI based on those sequences, and to recommend method calls in code completion using the trained HAPIs. Our empirical evaluation shows that our prototype tool can effectively learn API usages from 200 thousand apps containing 350 million method sequences. It recommends next method calls with top-3 accuracy of 90% and outperforms baseline approaches on average 10-20%.\",\"PeriodicalId\":6485,\"journal\":{\"name\":\"2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE)\",\"volume\":\"322 1\",\"pages\":\"416-427\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"68\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2884781.2884873\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2884781.2884873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68

摘要

移动应用开发者严重依赖于标准的API框架和库。然而,由于移动系统API框架的快速变化以及API文档和源代码示例的不足,学习API用法通常具有挑战性。在本文中,我们提出了一种从Android移动应用程序的字节码中学习API用法的新方法。我们的核心贡献包括HAPI,一个API使用的统计模型和三种算法,用于从应用程序的字节码中提取方法调用序列,根据这些序列训练HAPI,并使用训练好的HAPI在代码补全中推荐方法调用。我们的实证评估表明,我们的原型工具可以有效地从包含3.5亿个方法序列的20万个应用程序中学习API用法。它建议下一个方法调用的前3个准确率为90%,平均优于基准方法10-20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning API Usages from Bytecode: A Statistical Approach
Mobile app developers rely heavily on standard API frameworks and libraries. However, learning API usages is often challenging due to the fast-changing nature of API frameworks for mobile systems and the insufficiency of API documentation and source code examples. In this paper, we propose a novel approach to learn API usages from bytecode of Android mobile apps. Our core contributions include HAPI, a statistical model of API usages and three algorithms to extract method call sequences from apps’ bytecode, to train HAPI based on those sequences, and to recommend method calls in code completion using the trained HAPIs. Our empirical evaluation shows that our prototype tool can effectively learn API usages from 200 thousand apps containing 350 million method sequences. It recommends next method calls with top-3 accuracy of 90% and outperforms baseline approaches on average 10-20%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信