基于U-Net的SPECT多器官分割

Nina Mürschberger, Maximilian P. Reymann, P. Ritt, T. Kuwert, A. Vija, M. Cachovan, A. Maier
{"title":"基于U-Net的SPECT多器官分割","authors":"Nina Mürschberger, Maximilian P. Reymann, P. Ritt, T. Kuwert, A. Vija, M. Cachovan, A. Maier","doi":"10.1109/NSS/MIC42677.2020.9507779","DOIUrl":null,"url":null,"abstract":"In this work we investigate the usage of deep learning techniques on SPECT data solving a multi-organ segmentation problem. We extract projections from 21 Lu-177 MELP SPECT scans and obtain the corresponding ground truth labels from the accompanied CT scans by forward-projection of 3D CT organ segmentations. We train a U-Net to predict the area of the kidney, spleen, liver, and background seen in the projection data, using a weighted dice loss between prediction and target labels to account for class imbalance. With our method we achieved a mean dice coefficient of 72 % on the test set, encouraging us to perform further experiments using the U-Net.","PeriodicalId":6760,"journal":{"name":"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","volume":"4 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"U-Net for Multi-Organ Segmentation of SPECT Projection Data\",\"authors\":\"Nina Mürschberger, Maximilian P. Reymann, P. Ritt, T. Kuwert, A. Vija, M. Cachovan, A. Maier\",\"doi\":\"10.1109/NSS/MIC42677.2020.9507779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we investigate the usage of deep learning techniques on SPECT data solving a multi-organ segmentation problem. We extract projections from 21 Lu-177 MELP SPECT scans and obtain the corresponding ground truth labels from the accompanied CT scans by forward-projection of 3D CT organ segmentations. We train a U-Net to predict the area of the kidney, spleen, liver, and background seen in the projection data, using a weighted dice loss between prediction and target labels to account for class imbalance. With our method we achieved a mean dice coefficient of 72 % on the test set, encouraging us to perform further experiments using the U-Net.\",\"PeriodicalId\":6760,\"journal\":{\"name\":\"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)\",\"volume\":\"4 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSS/MIC42677.2020.9507779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSS/MIC42677.2020.9507779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们研究了在SPECT数据上使用深度学习技术来解决多器官分割问题。我们从21个Lu-177 MELP SPECT扫描中提取投影,并通过3D CT器官分割的前向投影从伴随的CT扫描中获得相应的地面真值标签。我们训练一个U-Net来预测投影数据中看到的肾、脾、肝和背景的面积,使用预测和目标标签之间的加权骰子损失来解释类别不平衡。通过我们的方法,我们在测试集上获得了72%的平均骰子系数,这鼓励我们使用U-Net进行进一步的实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
U-Net for Multi-Organ Segmentation of SPECT Projection Data
In this work we investigate the usage of deep learning techniques on SPECT data solving a multi-organ segmentation problem. We extract projections from 21 Lu-177 MELP SPECT scans and obtain the corresponding ground truth labels from the accompanied CT scans by forward-projection of 3D CT organ segmentations. We train a U-Net to predict the area of the kidney, spleen, liver, and background seen in the projection data, using a weighted dice loss between prediction and target labels to account for class imbalance. With our method we achieved a mean dice coefficient of 72 % on the test set, encouraging us to perform further experiments using the U-Net.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信