Haobo Jiang, J. Cui, Yujun Li, Kang Guan, Pinggen Rao
{"title":"水热炭界面厚度对Cf/SiBCN微型复合材料力学性能的影响","authors":"Haobo Jiang, J. Cui, Yujun Li, Kang Guan, Pinggen Rao","doi":"10.1080/09276440.2023.2204539","DOIUrl":null,"url":null,"abstract":"ABSTRACT The carbon fiber/siliconboron carbonitride (Cf/SiBCN) mini-composites exhibit poor mechanical properties due to the strong fiber-matrix bonding, which can be improved by introducing the hydrothermal carbon (HTC) interphase and further engineered by optimizing the HTC interphase thickness. To investigate the effect of the HTC interphase thickness on the mechanical properties of the Cf/SiBCN mini-composites, the tensile properties of the Cf/SiBCN mini-composites with different HTC interphase thicknesses were compared. The tensile test results show that the fracture behavior of the Cf/SiBCN mini-composites changes from brittle fracture to non-brittle fracture after introducing the HTC interphase. In addition, the tensile strength and work of fracture (WOF) of Cf/SiBCN mini-composites first increase and then decrease with the HTC interphase thickness increasing. The corresponding Cf/SiBCN mini-composites with 120 nm HTC interphase exhibits the maximum tensile strength and WOF, which are improved by around 4 times and 18 times, compared with the mini-composites without interphase. This work shows that the introduction of HTC interphase is conducive to improve the tensile properties of the Cf/SiBCN mini-composites, which can provide a preliminary basis for further investigating the effect of HTC interphase on the mechanical properties of the Cf/SiBCN composites. GRAPHICAL ABSTRACT","PeriodicalId":10653,"journal":{"name":"Composite Interfaces","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of hydrothermal carbon interphase thickness on mechanical properties of Cf/SiBCN mini-composites\",\"authors\":\"Haobo Jiang, J. Cui, Yujun Li, Kang Guan, Pinggen Rao\",\"doi\":\"10.1080/09276440.2023.2204539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The carbon fiber/siliconboron carbonitride (Cf/SiBCN) mini-composites exhibit poor mechanical properties due to the strong fiber-matrix bonding, which can be improved by introducing the hydrothermal carbon (HTC) interphase and further engineered by optimizing the HTC interphase thickness. To investigate the effect of the HTC interphase thickness on the mechanical properties of the Cf/SiBCN mini-composites, the tensile properties of the Cf/SiBCN mini-composites with different HTC interphase thicknesses were compared. The tensile test results show that the fracture behavior of the Cf/SiBCN mini-composites changes from brittle fracture to non-brittle fracture after introducing the HTC interphase. In addition, the tensile strength and work of fracture (WOF) of Cf/SiBCN mini-composites first increase and then decrease with the HTC interphase thickness increasing. The corresponding Cf/SiBCN mini-composites with 120 nm HTC interphase exhibits the maximum tensile strength and WOF, which are improved by around 4 times and 18 times, compared with the mini-composites without interphase. This work shows that the introduction of HTC interphase is conducive to improve the tensile properties of the Cf/SiBCN mini-composites, which can provide a preliminary basis for further investigating the effect of HTC interphase on the mechanical properties of the Cf/SiBCN composites. GRAPHICAL ABSTRACT\",\"PeriodicalId\":10653,\"journal\":{\"name\":\"Composite Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09276440.2023.2204539\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09276440.2023.2204539","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Effect of hydrothermal carbon interphase thickness on mechanical properties of Cf/SiBCN mini-composites
ABSTRACT The carbon fiber/siliconboron carbonitride (Cf/SiBCN) mini-composites exhibit poor mechanical properties due to the strong fiber-matrix bonding, which can be improved by introducing the hydrothermal carbon (HTC) interphase and further engineered by optimizing the HTC interphase thickness. To investigate the effect of the HTC interphase thickness on the mechanical properties of the Cf/SiBCN mini-composites, the tensile properties of the Cf/SiBCN mini-composites with different HTC interphase thicknesses were compared. The tensile test results show that the fracture behavior of the Cf/SiBCN mini-composites changes from brittle fracture to non-brittle fracture after introducing the HTC interphase. In addition, the tensile strength and work of fracture (WOF) of Cf/SiBCN mini-composites first increase and then decrease with the HTC interphase thickness increasing. The corresponding Cf/SiBCN mini-composites with 120 nm HTC interphase exhibits the maximum tensile strength and WOF, which are improved by around 4 times and 18 times, compared with the mini-composites without interphase. This work shows that the introduction of HTC interphase is conducive to improve the tensile properties of the Cf/SiBCN mini-composites, which can provide a preliminary basis for further investigating the effect of HTC interphase on the mechanical properties of the Cf/SiBCN composites. GRAPHICAL ABSTRACT
期刊介绍:
Composite Interfaces publishes interdisciplinary scientific and engineering research articles on composite interfaces/interphases and their related phenomena. Presenting new concepts for the fundamental understanding of composite interface study, the journal balances interest in chemistry, physical properties, mechanical properties, molecular structures, characterization techniques and theories.
Composite Interfaces covers a wide range of topics including - but not restricted to:
-surface treatment of reinforcing fibers and fillers-
effect of interface structure on mechanical properties, physical properties, curing and rheology-
coupling agents-
synthesis of matrices designed to promote adhesion-
molecular and atomic characterization of interfaces-
interfacial morphology-
dynamic mechanical study of interphases-
interfacial compatibilization-
adsorption-
tribology-
composites with organic, inorganic and metallic materials-
composites applied to aerospace, automotive, appliances, electronics, construction, marine, optical and biomedical fields