沉水浮式隧道张力腿涡激振动分析

IF 1.1 Q3 ENGINEERING, CIVIL
Z. Su, Shengnan Sun, Yushuo Lu, Yulong Pan
{"title":"沉水浮式隧道张力腿涡激振动分析","authors":"Z. Su, Shengnan Sun, Yushuo Lu, Yulong Pan","doi":"10.1680/jencm.21.00025","DOIUrl":null,"url":null,"abstract":"Considering the influence of axial and transverse vibration of tension leg of submerged floating tunnel, the non-linear vibration equation of tension leg under the action of vortex-induced excitation is derived and solved numerically by Galerkin method and Runge-Kutta method. The results show that the vibration amplitude and frequency of tension leg under the action of vortex-induced excitation are related to the natural frequency of tension leg, Due to water damping, the vortex-induced vibration response of tension leg in submerged floating tunnel is lower than that of the tension leg in air; the shorter the length of tension leg is, the higher the current velocity needed to produce vortex-induced resonance is; the larger the initial tension of tension leg is, the faster the current velocity needed to generate vortex-induced resonance is; the transverse pulse force increases with the increase of initial tension and the outer diameter of tension leg, and with the length of tension leg increase and decrease.","PeriodicalId":54061,"journal":{"name":"Proceedings of the Institution of Civil Engineers-Engineering and Computational Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vortex-induced vibration analysis of submerged floating tunnel tension legs\",\"authors\":\"Z. Su, Shengnan Sun, Yushuo Lu, Yulong Pan\",\"doi\":\"10.1680/jencm.21.00025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Considering the influence of axial and transverse vibration of tension leg of submerged floating tunnel, the non-linear vibration equation of tension leg under the action of vortex-induced excitation is derived and solved numerically by Galerkin method and Runge-Kutta method. The results show that the vibration amplitude and frequency of tension leg under the action of vortex-induced excitation are related to the natural frequency of tension leg, Due to water damping, the vortex-induced vibration response of tension leg in submerged floating tunnel is lower than that of the tension leg in air; the shorter the length of tension leg is, the higher the current velocity needed to produce vortex-induced resonance is; the larger the initial tension of tension leg is, the faster the current velocity needed to generate vortex-induced resonance is; the transverse pulse force increases with the increase of initial tension and the outer diameter of tension leg, and with the length of tension leg increase and decrease.\",\"PeriodicalId\":54061,\"journal\":{\"name\":\"Proceedings of the Institution of Civil Engineers-Engineering and Computational Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Civil Engineers-Engineering and Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1680/jencm.21.00025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers-Engineering and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jencm.21.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

考虑沉水浮式隧道张拉腿轴向和横向振动的影响,推导了涡激作用下张拉腿的非线性振动方程,并采用伽辽金法和龙格-库塔法进行了数值求解。结果表明:在涡激激励作用下,张力腿的振动幅值和频率与张力腿的固有频率有关,由于水的阻尼作用,水下浮式隧道中张力腿的涡激振动响应低于空气中的张力腿;张力腿长度越短,产生涡激共振所需的电流速度越高;张力腿初始张力越大,产生涡激共振所需的电流速度越快;横向脉冲力随初始张力和张力腿外径的增大而增大,随张力腿长度的增大和减小而增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vortex-induced vibration analysis of submerged floating tunnel tension legs
Considering the influence of axial and transverse vibration of tension leg of submerged floating tunnel, the non-linear vibration equation of tension leg under the action of vortex-induced excitation is derived and solved numerically by Galerkin method and Runge-Kutta method. The results show that the vibration amplitude and frequency of tension leg under the action of vortex-induced excitation are related to the natural frequency of tension leg, Due to water damping, the vortex-induced vibration response of tension leg in submerged floating tunnel is lower than that of the tension leg in air; the shorter the length of tension leg is, the higher the current velocity needed to produce vortex-induced resonance is; the larger the initial tension of tension leg is, the faster the current velocity needed to generate vortex-induced resonance is; the transverse pulse force increases with the increase of initial tension and the outer diameter of tension leg, and with the length of tension leg increase and decrease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信