{"title":"沉水浮式隧道张力腿涡激振动分析","authors":"Z. Su, Shengnan Sun, Yushuo Lu, Yulong Pan","doi":"10.1680/jencm.21.00025","DOIUrl":null,"url":null,"abstract":"Considering the influence of axial and transverse vibration of tension leg of submerged floating tunnel, the non-linear vibration equation of tension leg under the action of vortex-induced excitation is derived and solved numerically by Galerkin method and Runge-Kutta method. The results show that the vibration amplitude and frequency of tension leg under the action of vortex-induced excitation are related to the natural frequency of tension leg, Due to water damping, the vortex-induced vibration response of tension leg in submerged floating tunnel is lower than that of the tension leg in air; the shorter the length of tension leg is, the higher the current velocity needed to produce vortex-induced resonance is; the larger the initial tension of tension leg is, the faster the current velocity needed to generate vortex-induced resonance is; the transverse pulse force increases with the increase of initial tension and the outer diameter of tension leg, and with the length of tension leg increase and decrease.","PeriodicalId":54061,"journal":{"name":"Proceedings of the Institution of Civil Engineers-Engineering and Computational Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vortex-induced vibration analysis of submerged floating tunnel tension legs\",\"authors\":\"Z. Su, Shengnan Sun, Yushuo Lu, Yulong Pan\",\"doi\":\"10.1680/jencm.21.00025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Considering the influence of axial and transverse vibration of tension leg of submerged floating tunnel, the non-linear vibration equation of tension leg under the action of vortex-induced excitation is derived and solved numerically by Galerkin method and Runge-Kutta method. The results show that the vibration amplitude and frequency of tension leg under the action of vortex-induced excitation are related to the natural frequency of tension leg, Due to water damping, the vortex-induced vibration response of tension leg in submerged floating tunnel is lower than that of the tension leg in air; the shorter the length of tension leg is, the higher the current velocity needed to produce vortex-induced resonance is; the larger the initial tension of tension leg is, the faster the current velocity needed to generate vortex-induced resonance is; the transverse pulse force increases with the increase of initial tension and the outer diameter of tension leg, and with the length of tension leg increase and decrease.\",\"PeriodicalId\":54061,\"journal\":{\"name\":\"Proceedings of the Institution of Civil Engineers-Engineering and Computational Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Civil Engineers-Engineering and Computational Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1680/jencm.21.00025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers-Engineering and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jencm.21.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Vortex-induced vibration analysis of submerged floating tunnel tension legs
Considering the influence of axial and transverse vibration of tension leg of submerged floating tunnel, the non-linear vibration equation of tension leg under the action of vortex-induced excitation is derived and solved numerically by Galerkin method and Runge-Kutta method. The results show that the vibration amplitude and frequency of tension leg under the action of vortex-induced excitation are related to the natural frequency of tension leg, Due to water damping, the vortex-induced vibration response of tension leg in submerged floating tunnel is lower than that of the tension leg in air; the shorter the length of tension leg is, the higher the current velocity needed to produce vortex-induced resonance is; the larger the initial tension of tension leg is, the faster the current velocity needed to generate vortex-induced resonance is; the transverse pulse force increases with the increase of initial tension and the outer diameter of tension leg, and with the length of tension leg increase and decrease.