Pascal Brejaud, A. Charlet, Y. Chamaillard, A. Ivanco, P. Higelin
{"title":"气燃混合动力发动机:气门机构复杂度对气动模式影响的研究","authors":"Pascal Brejaud, A. Charlet, Y. Chamaillard, A. Ivanco, P. Higelin","doi":"10.2516/OGST/2009054","DOIUrl":null,"url":null,"abstract":"Although internal combustion engines display high overall maximum global efficiencies, this potential cannot be fully exploited in automotive applications: in real conditions, the average engine load (and thus efficiency) is quite low and the kinetic energy during a braking phase is lost. This work presents a hybrid pneumatic-combustion engine and the associated thermodynamic cycles, which is able to store and recover energy in the form of compressed air. The study focuses on the two major pneumatic modes: pneumatic pump mode and pneumatic motor mode. For each of them, three valvetrain technologies are considered: 4-stroke mode, 4-stroke mode with one camshaft disengaged, and 2-stroke fully variable.The concept can be adapted to SI or CI engines. In any case the valvetrain technology is the key to best fuel economy. A kinematic model of the charging valve’s actuator is introduced, and implemented in a quasi dimensional model of the pneumatic-combustion hybrid engine. Simulation results are presented for each pneumatic mode, for each valvetrain technology, in order to determine the best valve train configuration, and to show the impact of the kinematic valve actuator on the performance of the engine The tradeoffs between valvetrain sophistication and fuel economy will be presented for each case.","PeriodicalId":19444,"journal":{"name":"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole","volume":"143 1","pages":"27-37"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Pneumatic-Combustion Hybrid Engine: A Study of the Effect of the Valvetrain Sophistication on Pneumatic Modes\",\"authors\":\"Pascal Brejaud, A. Charlet, Y. Chamaillard, A. Ivanco, P. Higelin\",\"doi\":\"10.2516/OGST/2009054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although internal combustion engines display high overall maximum global efficiencies, this potential cannot be fully exploited in automotive applications: in real conditions, the average engine load (and thus efficiency) is quite low and the kinetic energy during a braking phase is lost. This work presents a hybrid pneumatic-combustion engine and the associated thermodynamic cycles, which is able to store and recover energy in the form of compressed air. The study focuses on the two major pneumatic modes: pneumatic pump mode and pneumatic motor mode. For each of them, three valvetrain technologies are considered: 4-stroke mode, 4-stroke mode with one camshaft disengaged, and 2-stroke fully variable.The concept can be adapted to SI or CI engines. In any case the valvetrain technology is the key to best fuel economy. A kinematic model of the charging valve’s actuator is introduced, and implemented in a quasi dimensional model of the pneumatic-combustion hybrid engine. Simulation results are presented for each pneumatic mode, for each valvetrain technology, in order to determine the best valve train configuration, and to show the impact of the kinematic valve actuator on the performance of the engine The tradeoffs between valvetrain sophistication and fuel economy will be presented for each case.\",\"PeriodicalId\":19444,\"journal\":{\"name\":\"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole\",\"volume\":\"143 1\",\"pages\":\"27-37\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2516/OGST/2009054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology-revue De L Institut Francais Du Petrole","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2516/OGST/2009054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pneumatic-Combustion Hybrid Engine: A Study of the Effect of the Valvetrain Sophistication on Pneumatic Modes
Although internal combustion engines display high overall maximum global efficiencies, this potential cannot be fully exploited in automotive applications: in real conditions, the average engine load (and thus efficiency) is quite low and the kinetic energy during a braking phase is lost. This work presents a hybrid pneumatic-combustion engine and the associated thermodynamic cycles, which is able to store and recover energy in the form of compressed air. The study focuses on the two major pneumatic modes: pneumatic pump mode and pneumatic motor mode. For each of them, three valvetrain technologies are considered: 4-stroke mode, 4-stroke mode with one camshaft disengaged, and 2-stroke fully variable.The concept can be adapted to SI or CI engines. In any case the valvetrain technology is the key to best fuel economy. A kinematic model of the charging valve’s actuator is introduced, and implemented in a quasi dimensional model of the pneumatic-combustion hybrid engine. Simulation results are presented for each pneumatic mode, for each valvetrain technology, in order to determine the best valve train configuration, and to show the impact of the kinematic valve actuator on the performance of the engine The tradeoffs between valvetrain sophistication and fuel economy will be presented for each case.