随机码块错误概率的逼近、边界和精确计算

R. Müller
{"title":"随机码块错误概率的逼近、边界和精确计算","authors":"R. Müller","doi":"10.1109/GLOBECOM42002.2020.9322551","DOIUrl":null,"url":null,"abstract":"This paper presents a method to calculate the exact average block error probability of some random code ensembles under maximum-likelihood decoding. Deviating from Shannon’s 1959 solid angle argument, we project the problem into two dimensions and apply standard trigonometry. This enables us to also analyze Gaussian random codes in additive white Gaussian noise and binary random codes for the binary symmetric channel. We find that the Voronoi regions harden doubly-exponential in the blocklength and utilize that to propose the new median bound that outperforms Shannon’s 1959 sphere packing bound for the uniform spherical ensemble, whenever the code contains more than three codewords. Furthermore, we propose a very tight approximation to simplify computation of both exact error probability and the two bounds.","PeriodicalId":12759,"journal":{"name":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","volume":"163 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Approximation, Bounding & Exact Calculation of Block Error Probability for Random Codes\",\"authors\":\"R. Müller\",\"doi\":\"10.1109/GLOBECOM42002.2020.9322551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method to calculate the exact average block error probability of some random code ensembles under maximum-likelihood decoding. Deviating from Shannon’s 1959 solid angle argument, we project the problem into two dimensions and apply standard trigonometry. This enables us to also analyze Gaussian random codes in additive white Gaussian noise and binary random codes for the binary symmetric channel. We find that the Voronoi regions harden doubly-exponential in the blocklength and utilize that to propose the new median bound that outperforms Shannon’s 1959 sphere packing bound for the uniform spherical ensemble, whenever the code contains more than three codewords. Furthermore, we propose a very tight approximation to simplify computation of both exact error probability and the two bounds.\",\"PeriodicalId\":12759,\"journal\":{\"name\":\"GLOBECOM 2020 - 2020 IEEE Global Communications Conference\",\"volume\":\"163 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GLOBECOM 2020 - 2020 IEEE Global Communications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM42002.2020.9322551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM42002.2020.9322551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种计算最大似然译码下随机码集的准确平均块错误率的方法。背离香农1959年的立体角论证,我们将问题投射到二维空间并应用标准三角函数。这使我们能够分析加性高斯白噪声中的高斯随机码和二进制对称信道的二进制随机码。我们发现Voronoi区域在块长度上呈双指数强化,并利用它提出了新的中值界,该中值界优于Shannon的1959球填充界,适用于均匀球系集,每当编码包含三个以上的码字时。此外,我们提出了一个非常严格的近似,以简化精确误差概率和两个边界的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Approximation, Bounding & Exact Calculation of Block Error Probability for Random Codes
This paper presents a method to calculate the exact average block error probability of some random code ensembles under maximum-likelihood decoding. Deviating from Shannon’s 1959 solid angle argument, we project the problem into two dimensions and apply standard trigonometry. This enables us to also analyze Gaussian random codes in additive white Gaussian noise and binary random codes for the binary symmetric channel. We find that the Voronoi regions harden doubly-exponential in the blocklength and utilize that to propose the new median bound that outperforms Shannon’s 1959 sphere packing bound for the uniform spherical ensemble, whenever the code contains more than three codewords. Furthermore, we propose a very tight approximation to simplify computation of both exact error probability and the two bounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信