{"title":"稀疏规划的近似界","authors":"Armin Askari, A. d’Aspremont, L. Ghaoui","doi":"10.1137/21m1398677","DOIUrl":null,"url":null,"abstract":"We show that sparsity constrained optimization problems over low dimensional spaces tend to have a small duality gap. We use the Shapley-Folkman theorem to derive both data-driven bounds on the duality gap, and an efficient primalization procedure to recover feasible points satisfying these bounds. These error bounds are proportional to the rate of growth of the objective with the target cardinality, which means in particular that the relaxation is nearly tight as soon as the target cardinality is large enough so that only uninformative features are added.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":"88 1","pages":"514-530"},"PeriodicalIF":1.9000,"publicationDate":"2021-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Approximation Bounds for Sparse Programs\",\"authors\":\"Armin Askari, A. d’Aspremont, L. Ghaoui\",\"doi\":\"10.1137/21m1398677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that sparsity constrained optimization problems over low dimensional spaces tend to have a small duality gap. We use the Shapley-Folkman theorem to derive both data-driven bounds on the duality gap, and an efficient primalization procedure to recover feasible points satisfying these bounds. These error bounds are proportional to the rate of growth of the objective with the target cardinality, which means in particular that the relaxation is nearly tight as soon as the target cardinality is large enough so that only uninformative features are added.\",\"PeriodicalId\":74797,\"journal\":{\"name\":\"SIAM journal on mathematics of data science\",\"volume\":\"88 1\",\"pages\":\"514-530\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM journal on mathematics of data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1398677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1398677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
We show that sparsity constrained optimization problems over low dimensional spaces tend to have a small duality gap. We use the Shapley-Folkman theorem to derive both data-driven bounds on the duality gap, and an efficient primalization procedure to recover feasible points satisfying these bounds. These error bounds are proportional to the rate of growth of the objective with the target cardinality, which means in particular that the relaxation is nearly tight as soon as the target cardinality is large enough so that only uninformative features are added.