Anna S. Frank, D. Matteson, H. Solvang, A. Lupattelli, H. Nordeng
{"title":"多重归算下广义倾向评分的扩展平衡评价","authors":"Anna S. Frank, D. Matteson, H. Solvang, A. Lupattelli, H. Nordeng","doi":"10.1515/em-2019-0003","DOIUrl":null,"url":null,"abstract":"Abstract This manuscript extends the definition of the Absolute Standardized Mean Difference (ASMD) for binary exposure (M = 2) to cases for M > 2 on multiple imputed data sets. The Maximal Maximized Standardized Difference (MMSD) and the Maximal Averaged Standardized Difference (MASD) were proposed. For different percentages, missing data were introduced in covariates in the simulated data based on the missing at random (MAR) assumption. We then investigate the performance of these two metric definitions using simulated data of full and imputed data sets. The performance of the MASD and the MMSD were validated by relating the balance metrics to estimation bias. The results show that there is an association between the balance metrics and bias. The proposed balance diagnostics seem therefore appropriate to assess balance for the generalized propensity score (GPS) under multiple imputation.","PeriodicalId":37999,"journal":{"name":"Epidemiologic Methods","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Extending balance assessment for the generalized propensity score under multiple imputation\",\"authors\":\"Anna S. Frank, D. Matteson, H. Solvang, A. Lupattelli, H. Nordeng\",\"doi\":\"10.1515/em-2019-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This manuscript extends the definition of the Absolute Standardized Mean Difference (ASMD) for binary exposure (M = 2) to cases for M > 2 on multiple imputed data sets. The Maximal Maximized Standardized Difference (MMSD) and the Maximal Averaged Standardized Difference (MASD) were proposed. For different percentages, missing data were introduced in covariates in the simulated data based on the missing at random (MAR) assumption. We then investigate the performance of these two metric definitions using simulated data of full and imputed data sets. The performance of the MASD and the MMSD were validated by relating the balance metrics to estimation bias. The results show that there is an association between the balance metrics and bias. The proposed balance diagnostics seem therefore appropriate to assess balance for the generalized propensity score (GPS) under multiple imputation.\",\"PeriodicalId\":37999,\"journal\":{\"name\":\"Epidemiologic Methods\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epidemiologic Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/em-2019-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiologic Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/em-2019-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2
摘要
本文将二元暴露(M = 2)的绝对标准化平均差(ASMD)的定义扩展到多个输入数据集上M > 2的情况。提出了最大最大标准化差(MMSD)和最大平均标准化差(MASD)。基于随机缺失(missing at random, MAR)假设,在模拟数据的协变量中引入不同百分比的缺失数据。然后,我们使用完整和输入数据集的模拟数据来研究这两种度量定义的性能。通过将平衡度量与估计偏差相关联,验证了MASD和MMSD的性能。结果表明,在平衡指标和偏差之间存在关联。因此,所提出的平衡诊断似乎适合于评估多重归算下广义倾向评分(GPS)的平衡。
Extending balance assessment for the generalized propensity score under multiple imputation
Abstract This manuscript extends the definition of the Absolute Standardized Mean Difference (ASMD) for binary exposure (M = 2) to cases for M > 2 on multiple imputed data sets. The Maximal Maximized Standardized Difference (MMSD) and the Maximal Averaged Standardized Difference (MASD) were proposed. For different percentages, missing data were introduced in covariates in the simulated data based on the missing at random (MAR) assumption. We then investigate the performance of these two metric definitions using simulated data of full and imputed data sets. The performance of the MASD and the MMSD were validated by relating the balance metrics to estimation bias. The results show that there is an association between the balance metrics and bias. The proposed balance diagnostics seem therefore appropriate to assess balance for the generalized propensity score (GPS) under multiple imputation.
期刊介绍:
Epidemiologic Methods (EM) seeks contributions comparable to those of the leading epidemiologic journals, but also invites papers that may be more technical or of greater length than what has traditionally been allowed by journals in epidemiology. Applications and examples with real data to illustrate methodology are strongly encouraged but not required. Topics. genetic epidemiology, infectious disease, pharmaco-epidemiology, ecologic studies, environmental exposures, screening, surveillance, social networks, comparative effectiveness, statistical modeling, causal inference, measurement error, study design, meta-analysis