Wasserstein k-NN分类器的普遍一致性:一个否定和一些肯定的结果

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Donlapark Ponnoprat
{"title":"Wasserstein k-NN分类器的普遍一致性:一个否定和一些肯定的结果","authors":"Donlapark Ponnoprat","doi":"10.1093/imaiai/iaad027","DOIUrl":null,"url":null,"abstract":"\n We study the $k$-nearest neighbour classifier ($k$-NN) of probability measures under the Wasserstein distance. We show that the $k$-NN classifier is not universally consistent on the space of measures supported in $(0,1)$. As any Euclidean ball contains a copy of $(0,1)$, one should not expect to obtain universal consistency without some restriction on the base metric space, or the Wasserstein space itself. To this end, via the notion of $\\sigma $-finite metric dimension, we show that the $k$-NN classifier is universally consistent on spaces of discrete measures (and more generally, $\\sigma $-finite uniformly discrete measures) with rational mass. In addition, by studying the geodesic structures of the Wasserstein spaces for $p=1$ and $p=2$, we show that the $k$-NN classifier is universally consistent on spaces of measures supported on a finite set, the space of Gaussian measures and spaces of measures with finite wavelet series densities.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universal consistency of Wasserstein k-NN classifier: a negative and some positive results\",\"authors\":\"Donlapark Ponnoprat\",\"doi\":\"10.1093/imaiai/iaad027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We study the $k$-nearest neighbour classifier ($k$-NN) of probability measures under the Wasserstein distance. We show that the $k$-NN classifier is not universally consistent on the space of measures supported in $(0,1)$. As any Euclidean ball contains a copy of $(0,1)$, one should not expect to obtain universal consistency without some restriction on the base metric space, or the Wasserstein space itself. To this end, via the notion of $\\\\sigma $-finite metric dimension, we show that the $k$-NN classifier is universally consistent on spaces of discrete measures (and more generally, $\\\\sigma $-finite uniformly discrete measures) with rational mass. In addition, by studying the geodesic structures of the Wasserstein spaces for $p=1$ and $p=2$, we show that the $k$-NN classifier is universally consistent on spaces of measures supported on a finite set, the space of Gaussian measures and spaces of measures with finite wavelet series densities.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imaiai/iaad027\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imaiai/iaad027","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了Wasserstein距离下概率测度的k近邻分类器(k -NN)。我们证明了$k$-NN分类器在$(0,1)$中支持的测度空间上不是普遍一致的。由于任何欧几里得球都包含$(0,1)$的副本,因此不应期望在基本度量空间或Wasserstein空间本身没有某些限制的情况下获得全称一致性。为此,通过$\sigma $-有限度量维的概念,我们证明了$k$-NN分类器在具有有理质量的离散测度(更一般地说,$\sigma $-有限一致离散测度)的空间上是普遍一致的。此外,通过研究$p=1$和$p=2$的Wasserstein空间的测地线结构,我们证明了$k$-NN分类器在有限集合支持的测度空间、高斯测度空间和小波序列密度有限的测度空间上是普遍一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Universal consistency of Wasserstein k-NN classifier: a negative and some positive results
We study the $k$-nearest neighbour classifier ($k$-NN) of probability measures under the Wasserstein distance. We show that the $k$-NN classifier is not universally consistent on the space of measures supported in $(0,1)$. As any Euclidean ball contains a copy of $(0,1)$, one should not expect to obtain universal consistency without some restriction on the base metric space, or the Wasserstein space itself. To this end, via the notion of $\sigma $-finite metric dimension, we show that the $k$-NN classifier is universally consistent on spaces of discrete measures (and more generally, $\sigma $-finite uniformly discrete measures) with rational mass. In addition, by studying the geodesic structures of the Wasserstein spaces for $p=1$ and $p=2$, we show that the $k$-NN classifier is universally consistent on spaces of measures supported on a finite set, the space of Gaussian measures and spaces of measures with finite wavelet series densities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信