C. Kittel, Xavier Fettweis, G. Picard, N. Gourmelen
{"title":"卫星探测到的融化同化增加了阿蒙森地区(南极洲西部)的MAR模拟融化","authors":"C. Kittel, Xavier Fettweis, G. Picard, N. Gourmelen","doi":"10.25518/0770-7576.6616","DOIUrl":null,"url":null,"abstract":"Surface melt over the Antarctic ice shelves is one of the largest uncertainties related to sea level rise over the 21st century. However, current climate models still struggle to accurately represent it, limiting our comprehension of processes driving melt spatial and temporal variability and its consequences on the stability of the Antarctic ice sheet. Recent advances in Earth monitoring thanks to satellites have enabled new estimations of Antarctic melt extent. They can detect if and where melt occurs, while the amount of meltwater produced can only be deduced from model simulations. In order to combine advantages of both tools, we present new melt estimates based on a regional climate model assimilating the satellite-derived melt extent. This improves the comparison between model and satellite estimates paving the way for a re-estimation of the amount of melt produced each year on the surface of the entire Antarctic ice sheet.","PeriodicalId":35838,"journal":{"name":"Bulletin de la Societe Royale des Sciences de Liege","volume":"203 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"L'assimilation de la fonte détectée par les satellites augmente la fonte simulée par MAR sur le secteur d'Amundsen (Antarctique de l’Ouest)\",\"authors\":\"C. Kittel, Xavier Fettweis, G. Picard, N. Gourmelen\",\"doi\":\"10.25518/0770-7576.6616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface melt over the Antarctic ice shelves is one of the largest uncertainties related to sea level rise over the 21st century. However, current climate models still struggle to accurately represent it, limiting our comprehension of processes driving melt spatial and temporal variability and its consequences on the stability of the Antarctic ice sheet. Recent advances in Earth monitoring thanks to satellites have enabled new estimations of Antarctic melt extent. They can detect if and where melt occurs, while the amount of meltwater produced can only be deduced from model simulations. In order to combine advantages of both tools, we present new melt estimates based on a regional climate model assimilating the satellite-derived melt extent. This improves the comparison between model and satellite estimates paving the way for a re-estimation of the amount of melt produced each year on the surface of the entire Antarctic ice sheet.\",\"PeriodicalId\":35838,\"journal\":{\"name\":\"Bulletin de la Societe Royale des Sciences de Liege\",\"volume\":\"203 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin de la Societe Royale des Sciences de Liege\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25518/0770-7576.6616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin de la Societe Royale des Sciences de Liege","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25518/0770-7576.6616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Multidisciplinary","Score":null,"Total":0}
L'assimilation de la fonte détectée par les satellites augmente la fonte simulée par MAR sur le secteur d'Amundsen (Antarctique de l’Ouest)
Surface melt over the Antarctic ice shelves is one of the largest uncertainties related to sea level rise over the 21st century. However, current climate models still struggle to accurately represent it, limiting our comprehension of processes driving melt spatial and temporal variability and its consequences on the stability of the Antarctic ice sheet. Recent advances in Earth monitoring thanks to satellites have enabled new estimations of Antarctic melt extent. They can detect if and where melt occurs, while the amount of meltwater produced can only be deduced from model simulations. In order to combine advantages of both tools, we present new melt estimates based on a regional climate model assimilating the satellite-derived melt extent. This improves the comparison between model and satellite estimates paving the way for a re-estimation of the amount of melt produced each year on the surface of the entire Antarctic ice sheet.
期刊介绍:
The ‘Société Royale des Sciences de Liège" (hereafter the Society) regularly publishes in its ‘Bulletin" original scientific papers in the fields of astrophysics, biochemistry, biophysics, biology, chemistry, geology, mathematics, mineralogy or physics, following peer review approval.