{"title":"一个完全明确的5-多面体图","authors":"David Barnette","doi":"10.1016/S0021-9800(70)80053-9","DOIUrl":null,"url":null,"abstract":"<div><p>A 5-dimensional convex polytope <em>P</em> is constructed whose graph <em>G</em> has the property that if it is the graph a convex polytope <em>P</em>′ then <em>P</em>′ is combinatorially equivalent to <em>P</em> and, furthermore, <em>G</em> can be realized as the graph of <em>P</em> in only one way (i.e., if a subgraph of <em>G</em> determines a face of <em>P</em> it also determines a face of <em>P</em>′).</p></div>","PeriodicalId":100765,"journal":{"name":"Journal of Combinatorial Theory","volume":"9 1","pages":"Pages 44-53"},"PeriodicalIF":0.0000,"publicationDate":"1970-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80053-9","citationCount":"1","resultStr":"{\"title\":\"A completely unambiguous 5-polyhedral graph\",\"authors\":\"David Barnette\",\"doi\":\"10.1016/S0021-9800(70)80053-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A 5-dimensional convex polytope <em>P</em> is constructed whose graph <em>G</em> has the property that if it is the graph a convex polytope <em>P</em>′ then <em>P</em>′ is combinatorially equivalent to <em>P</em> and, furthermore, <em>G</em> can be realized as the graph of <em>P</em> in only one way (i.e., if a subgraph of <em>G</em> determines a face of <em>P</em> it also determines a face of <em>P</em>′).</p></div>\",\"PeriodicalId\":100765,\"journal\":{\"name\":\"Journal of Combinatorial Theory\",\"volume\":\"9 1\",\"pages\":\"Pages 44-53\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1970-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80053-9\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021980070800539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021980070800539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 5-dimensional convex polytope P is constructed whose graph G has the property that if it is the graph a convex polytope P′ then P′ is combinatorially equivalent to P and, furthermore, G can be realized as the graph of P in only one way (i.e., if a subgraph of G determines a face of P it also determines a face of P′).